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Abstract 

Verification and validation (V&V) are the primary means to assess the accuracy and 
reliability of computational simulations. V&V methods and procedures have fundamentally 
improved the credibility of simulations in several high-consequence fields, such as nuclear reactor 
safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology 
is not uniform across engineering disciplines, code verification deals with assessing the reliability 
of the software coding, and solution verification deals with assessing the numerical accuracy of 
the solution to a computational model. Validation addresses the physics modeling accuracy of a 
computational simulation by comparing the computational results with experimental data. Code 
verification benchmarks and validation benchmarks have been constructed for a number of years 
in every field of computational simulation. However, no comprehensive guidelines have been 
proposed for the construction and use of V&V benchmarks. For example, the field of nuclear 
reactor safety has not focused on code verification benchmarks, but it has placed great emphasis 
on developing validation benchmarks. Many of these validation benchmarks are closely related to 
the operations of actual reactors at near-safety-critical conditions, as opposed to being more 
fundamental-physics benchmarks. This paper presents recommendations for the effective design 
and use of code verification benchmarks based on manufactured solutions, classical analytical 
solutions, and highly accurate numerical solutions. In addition, this paper presents 
recommendations for the design and use of validation benchmarks, highlighting the careful design 
of building-block experiments, the estimation of experimental measurement uncertainty for both 
inputs and outputs to the code, validation metrics, and the role of model calibration in validation. 
It is argued that the understanding of  predictive capability of a computational model is built on 
the level of achievement in V&V activities, how closely related the V&V benchmarks are to the 
actual application of interest, and the quantification of uncertainties related to the application of 
interest.  
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1  Introduction 

1.1 Background 

The importance of computer simulations in the design and performance assessment of 
engineered systems has increased dramatically during the last three decades. The systems of 
interest include existing or proposed systems that operate, for example, at design conditions, at 
off-design conditions, and at failure-mode conditions that apply in accident scenarios. The role of 
computer simulations is especially critical if we are interested in the reliability, robustness, or 
safety of high-consequence systems that cannot ever be physically tested in a fully representative 
environment. Examples of such systems are the catastrophic failure of a full-scale containment 
building for a nuclear power plant, the long-term underground storage of nuclear waste, and a 
nuclear weapon involved in a transportation accident. In many situations, it is even difficult to 
specify what a “representative environment” actually means in a complex system. Computer 
simulations of high-consequence systems are increasingly being used in furthering our 
understanding of the systems’ responses, in developing public policy, in preparing safety 
procedures, and in determining legal liability. Thus, as computer simulations are given a more 
central role in the decision-making process, we believe the credibility of the computational results 
must be raised to a higher level than what has previously been considered acceptable. From a 
historical perspective, we are in the early days of changing from an engineering culture where 
hardware is built, tested, and then redesigned, if failure occurred, to a culture that is more and 
more reliant on computational simulation. To have justified confidence in this evolving culture, 
we must make major improvements in the transparency and maturity of the computer codes used, 
the clarity of the physics included and excluded in the modeling, and the comprehensiveness of 
the uncertainty assessment performed. Stated more bluntly, we need to move from a culture of 
glossy marketing and arrogance to a culture that forthrightly addresses the limitations, 
weaknesses, and uncertainty of our simulations. 

 
Developers of computational software, computational analysts, and users of the 

computational results face a critical question: How should confidence in computational science 
and engineering (CS&E) be critically assessed? Verification and validation (V&V) of 
computational simulations are the major processes for assessing and quantifying this confidence. 
Briefly, verification is the assessment of the software correctness and numerical accuracy of the 
solution to a given computational model. Validation is the assessment of the physical accuracy of 
a computational model based on comparisons between computational simulations and 
experimental data. In verification, the association or relationship of the simulation to the real 
world is not an issue. In validation, the relationship between computation and the real world 
(experimental data) is the issue. 

 
The nuclear reactor safety community has a long history of contributing to the intellectual 

foundations of both V&V and uncertainty quantification (UQ). The risk assessment community in 
its studies and analysis of the underground storage of nuclear waste has also made significant 
contributions to the field of UQ. However, contributions from both of these communities to 
V&V&UQ have concentrated on software quality engineering (SQE) procedures, as well as on 
statistical procedures for risk assessment. It is fair to say that computationalists (code users and 
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code developers) and experimentalists in the field of fluid dynamics have been pioneers in the 
development of terminology, methodology, and procedures for V&V. The (only) book in the field 
on V&V provides a good summary of the development of many of the methodologies and 
procedures in computational fluid dynamics (CFD) [1]. In addition, Refs. [2-5] provide a 
comprehensive review of the history and development of V&V from the perspective of the CFD 
community. 

 
Achieving the next level of credibility in computational simulations will require concerted 

and determined efforts by individuals, universities, corporations, governmental agencies, 
commercial code-development companies, engineering societies, and standards-writing 
organizations throughout the world. The goal of these efforts should be to improve the reliability 
of the computer software, the estimation of numerical accuracy, the quality of the physics models 
used, the quantification of uncertainty, and the training and expertise of users of the codes. In 
addition, new methods are critically needed for effectively communicating the maturity and 
reliability of each of these elements, especially in relationship to decision making for high-
consequence systems. This paper focuses on one aspect of the needed improvements to software 
reliability and physics modeling, namely, the construction and use of highly demanding V&V 
benchmarks. The benchmarks of interest are those related to the accuracy and reliability of physics 
models and codes. We are not interested here in benchmarks that relate to computer performance 
issues, such as the computing speed of codes on different types of computer hardware and 
operating systems. 

 
During the last two decades, the National Agency for Finite Element Methods and Standards 

(NAFEMS) has developed some of the most widely known V&V benchmarks [6]. Roughly 30 
verification benchmarks have been constructed by NAFEMS. The majority of these benchmarks 
have targeted solid mechanics simulations, though some of the more recent benchmarks have been 
in fluid dynamics. Most of the NAFEMS verification benchmarks consist of an analytical solution 
or an accurate numerical solution to a simplified physical process described by a partial 
differential equation (PDE). The NAFEMS benchmark set is carefully defined, numerically 
demanding, and well documented. However, these benchmarks are currently very restricted in 
their coverage of various mathematical and/or numerical difficulties and in their coverage of 
physical phenomena. Further, the performance of a given code on the benchmark is subject to 
interpretation by the user of the code. It is also likely that the performance of a code on the 
benchmark is dependent on the experience and skill of the user. 

 
Several large commercial code companies specializing in solid mechanics have developed an 

extensive set of well-documented verification benchmarks that can be exercised by licensed users 
of their codes. Such benchmarks are intended to be applied only to a particular code, and they 
describe how that code performed on the benchmark problems. The performance results of a code 
tested on the benchmark problems by a commercial company can be clearly compared with the 
results obtained by a user who tests the code with the same benchmark problems. These company- 
and user-testing activities give the user a better understanding of the minimal performance that can 
be expected from a code. It should be noted here that information about a code’s performance on a 
set of benchmark problems prior to purchase of the code is often difficult to obtain, as this 
information is proprietary. 
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Two examples of commercial codes with well-documented verification benchmarks are 
ANSYS® and ABAQUS®. ANSYS [7] and ABAQUS [8] have roughly 270 formal verification test 
cases. The careful description and documentation of the ANSYS and ABAQUS benchmark sets is 
impressive. However, the primary goal in essentially all of these documented benchmarks is to 
demonstrate the “engineering accuracy” of the codes, not to precisely and carefully quantify the 
numerical error in the solutions. As stated in one set of documentation, “In some cases, an exact 
comparison with a finite-element solution would require an infinite number of elements and/or an 
infinite number of iterations separated by an infinitely small step size. Such a comparison is 
neither practical nor desirable” [7]. We disagree completely with this point of view because (a) an 
exact comparison with a finite element solution does not require an infinite number of elements or 
iterations, or an infinitely small time step; and (b) it is practical and desirable to carefully assess 
the accuracy of a code by comparison with theoretically demanding solutions. Our support for 
these two counterarguments is expressed in the body of this paper. 

 
Noticeably absent from the discussion of commercial codes above are CFD software 

packages. Although we have not surveyed all the major commercial CFD codes available, we have 
not found extensive, formally documented verification or validation benchmark sets for those 
codes we have examined. As an indication of the poor state of maturity of CFD software, a recent 
paper by Abanto et al. [9] tested three unnamed commercial CFD codes on relatively simple 
verification test problems. The poor results of the codes were shocking to some people, but not to 
the authors of the paper and not to us. 

 
In the field of nuclear reactor engineering, the Nuclear Energy Agency, Committee on the 

Safety of Nuclear Installations (CSNI) devoted significant resources toward developing validation 
benchmarks, which they refer to as International Standard Problems (ISPs). This effort began in 
1977 with recommendations for the design, construction, and use of ISPs for loss-of-coolant 
accidents (LOCAs) [10]. The CSNI recognized the importance of issues such as (a) providing a 
detailed description of the actual operational conditions in the experimental facility, not those 
conditions that were requested or desired; (b) preparing careful estimates of the uncertainty in 
experimental measurements and informing the analyst of the real estimate; (c) reporting the initial 
and boundary conditions that were realized in the experiment, not those conditions that were 
desired; and (d) conducting a sensitivity analysis to determine the most important factors that 
affect the predicted system responses of interest. The CSNI has continually refined the guidance 
for ISPs such that the most recent recommendations for the ISPs address any type of experimental 
benchmark, not just benchmarks for LOCA accidents [11]. Thus, the primary goal of the ISPs 
remains the same for all types of benchmarks: “to contribute to a better understanding of 
postulated and actual events” that could affect the safety of nuclear power plants. 

 
A number of efforts have been undertaken in the development of validation databases that 

could mature into well-founded benchmarks. In the United States, the NPARC Alliance has 
developed a validation database that has roughly 20 different flows [12]. In Europe, starting in the 
early 1990s, there has been a much more organized effort to develop validation databases. These 
databases have primarily focused on aerospace applications. ERCOFTAC (the European Research 
Community on Flow, Turbulence and Combustion) has collected a number of experimental 
datasets for validation applications [13]. QNET-CFD is a thematic network on quality and trust for 
the industrial applications of CFD [14]. This network has more than 40 participants from several 
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countries who represent research establishments and many sectors of the industry, including 
commercial CFD software companies. For a history and review of the various efforts, see Rizzi 
and Vos [15] and Vos et al. [16]. 

 
We note that the validation databases described by Rizzi and Vos [15] and Vos et al. [16] 

contain many cases that are for very complex flows, which are sometimes referred to as “industrial 
applications.” We have observed, however, both through our own experience and in the open 
literature, that attempts to validate models on complex physical processes are commonly 
unsuccessful because the computational results do not compare well with the experimental 
measurements. Then the computational analysts often do one of the following: (1) they engage in 
a model calibration activity, dealing with both physical and numerical parameters in the model, to 
obtain better agreement; (2) they reformulate the assumptions in their model to obtain better 
agreement, thereby changing the model; or (3) they start pointing accusatory fingers at the 
experimentalists about either what is wrong with the experimental data or what the 
experimentalists should have measured to make the data more effective for validation. Regarding 
model calibration specifically, we view this activity as a useful and pragmatic path forward for 
application of the calibrated model in future predictions that are very similar to the experimental 
database. Calibration, however, rarely addresses the underlying weaknesses of the models because 
typically there are so many modeling approximations, or deficiencies, that could be contributing to 
the disagreement [4]. We believe that calibration should be undertaken when it is clearly 
understood that this activity is a response to V&V assessment, not a replacement for V&V 
assessment [17-19]. 

 
As we discuss in more detail in Section 2.3, validation benchmarks are much more difficult 

to construct and use than verification benchmarks. The primary difficulty in constructing 
validation benchmarks is that experimental measurements in the past have rarely been designed to 
provide true validation benchmark data. Refs. [2-4, 20-22] give an in-depth discussion of the 
characteristics of validation experiments, as well as an example of a wind tunnel experiment that 
was specifically designed to be a true validation benchmark. The validation benchmarks that have 
been compiled and documented by organized efforts, some of which were referenced above, are 
indeed instructive and useful to users of the codes and to developers of physics models. However, 
we argue in this paper that much more needs to be incorporated into the validation benchmarks, 
both experimentally and computationally, to achieve the next level of usefulness and critical 
assessment. 

 
Ref. [5] introduced the concept of strong-sense benchmarks (SSBs) in V&V. Oberkampf et 

al. argued that SSBs should be of a high-enough quality that they can be viewed as engineering 
reference standards. These authors stated that SSBs are test problems that have the following four 
characteristics: (1) the purpose of the benchmark is clearly understood, (2) the definition and 
description of the benchmark is precisely stated, (3) specific requirements are stated for how 
comparisons are to be made with the results of the benchmark, and (4) acceptance criteria for 
comparison with the benchmark are defined. In addition, these authors required that information 
on each of these characteristics be “promulgated,” i.e., the information is well documented and 
publicly available. Although a number of benchmarks are available, a few of which were 
discussed previously, these authors asserted that SSBs do not presently exist in computational 
physics or engineering. They suggested that professional societies, academic institutions, 
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governmental or international organizations, and newly formed nonprofit organizations would be 
the most likely to construct SSBs. This paper builds on these basic ideas and provides detailed 
recommendations for the characteristics of V&V SSBs and suggestions on how computational 
simulations can be compared with SSBs. 

 

1.2 Outline of the Paper 

Section 2 begins with a brief review of the terminology of both verification and validation 
and points out how different communities have varying interpretations of these processes. The two 
types of verification, code verification and solution verification, are then discussed. It is pointed 
out that validation is composed of three quite different activities: assessment of the accuracy of 
computational models by comparison with experiments; extrapolation of these models to 
applications of interest; and determination if the estimated accuracy of the extrapolation is 
adequate for the applications of interest. The concept of a validation hierarchy is discussed, which 
is a valuable tool for assessing the accuracy of computational models at many different levels of 
complexity. The section ends with a focus on validation experiments, identifying the required 
characteristics of these experiments and explaining how these experiments differ from traditional 
experiments and how they form the central role in the construction of validation benchmarks. 

 
Section 3 discusses our recommendations for constructing and using verification 

benchmarks. First, we present the four elements that should be contained in the documentation of 
a verification benchmark: (1) conceptual description, (2) mathematical description, (3) accuracy 
assessment, and (4) additional user information. Examples are provided for applying these 
elements to the four types of benchmarks, namely, manufactured solutions, analytical solutions, 
numerical solutions to ordinary differential equations (ODEs), and numerical solutions to PDEs. 
We recommend that when a candidate code is compared with a verification benchmark, the results 
of the comparisons with benchmarks not be included in the benchmark documentation per se. We 
next discuss how formal comparison results could be used and identify the types of information 
that should be included in the comparisons. 

 
Section 4 discusses our recommendations for constructing and using validation benchmarks. 

First, we present the four elements that should be contained in the documentation of a validation 
benchmark: (1) conceptual description; (2) experimental description; (3) uncertainty quantification 
of benchmark measurements; and (4) additional user information. We next discuss how candidate 
code results could be compared with the benchmark results, paying particular attention to issues 
related to the computation of nondeterministic results to determine the uncertainty of system 
response quantities (SRQs) due to uncertainties in input quantities, the computation of validation 
metrics to quantitatively measure the difference between experimental and computational results, 
the minimization of model calibration in comparisons with validation benchmarks, and the 
constructive role of global sensitivity analyses in validation experiments. 

 
Section 5 raises a diverse set of issues about how a V&V benchmark database might be 

initiated and implemented, as well as be a contributor to CS&E. Examples of these issues include 
the following: primary and secondary goals of the database, initial construction of an Internet-
based system, software construction of the database, review and approval procedures for entries 
into the database, open versus restricted use of the database, organizational control of the database, 
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and funding of the database. 
 
Closing remarks and some possible implications of constructing a V&V benchmark database 

are given in Section 6. 
 

2  Review of Verification and Validation Processes 
 
Various technical disciplines have long had varying definitions for verification and 

validation. The Institute of Electrical and Electronics Engineers (IEEE) was the first major 
engineering society to develop formal definitions for V&V [23]. These definitions, initially 
published in 1984, were adopted by the American Nuclear Society [24] and the International 
Organization for Standardization (ISO) [25]. After a number of years of discussion and intense 
debate in the U.S. defense and CFD communities, the IEEE definitions were found to be 
confusing and lacking in utility. In particular, these definitions did not directly address certain 
issues that are very important in CS&E, such as the dominance of algorithmic issues in the 
numerical solution of PDEs, and the importance of comparisons of computational results with the 
“real world.” As a result, the U.S. Department of Defense (DoD) developed an alternate set of 
definitions [26, 27]. Following very closely the DoD definitions, the American Institute of 
Aeronautics and Astronautics (AIAA) and the American Society of Mechanical Engineers 
(ASME) adopted the following definitions [17, 18]: 

 
Verification: The process of determining that a model implementation accurately represents 

the developer’s conceptual description of the model and the solution to the model. 
 
Validation: The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model. 
 
These definitions have also been recently adopted by the U.S. Department of Energy National 
Nuclear Security Administration’s (NNSA’s) Advanced Simulation and Computing (ASC) 
program [28]. For a detailed discussion of the history of the development of the terminology from 
the perspective of the CS&E communities, see Refs. [4, 5, 29, 30]. 

 
Verification provides evidence, or substantiation, that the mathematical model, which is 

derived from the conceptual model, is solved correctly by the computer code that is being 
assessed. In CS&E, the mathematical model is typically defined by a set of partial differential or 
integro-differential equations, along with the required initial and boundary conditions. The 
computer code solves the computational model, i.e., the discrete-mathematics version (or 
mapping) of the mathematical model translated into software. The fundamental strategy in 
verification is to identify, quantify, and reduce errors caused by the mapping of the mathematical 
model to a computer code. Verification does not address the issue of whether the mathematical 
model has any relationship to the real world, e.g., physics. 

 
Validation, on the other hand, provides evidence, or substantiation, of how accurately the 

computational model simulates the real world for system responses of interest. The U.S. DoD and 
many other organizations must deal with complex systems composed of physical processes, 
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computer-controlled subsystems, and strong human interactions. From the perspective of these 
organizations, assessment of accuracy compared to the real world would include expert opinion 
and well-founded results from other computer simulations. From the perspective of the CS&E 
community, the real world is traditionally viewed to only mean experimentally measured 
quantities in a physical experiment [17, 18]. Validation activities presume that the computational 
model result is an accurate solution of the mathematical model. However, programming errors in 
the computer code, deficiencies in the numerical algorithms, or inaccuracies in the numerical 
solution, for example, may cancel one another in specific validation calculations and give the 
illusion of an accurate representation of the experimental measurements. Verification, thus, should 
ideally be accomplished before the validation comparisons are made so that one’s assessment of 
numerical accuracy is not influenced by whether the agreement of the computational results with 
experimental data is “good” or “bad.” While verification is not simple, it is conceptually less 
complex than validation because it deals with mathematics and computer science issues. 
Validation, on the other hand, must address a much broader range of issues: assessment of the 
fidelity of the mathematical modeling of physical processes; assessment of the consistency, or 
relevance, of the mathematical model to the physical experiment being conducted; influence of the 
experimental diagnostic techniques on the measurements themselves; and estimation of 
experimental measurement uncertainty. Validation rests on evidence that the appropriate 
experiments were executed correctly, as well as on evidence that supports the mathematical 
accuracy of the computed solution. These issues are practically coupled in nontrivial ways in 
complex validation problems although they are logically distinct. As Roache [1] succinctly states, 
“Verification deals with mathematics; validation deals with physics.” 

 

2.1 Verification Activities 

2.1.1 Fundamentals of Verification 

Two types of verification are generally recognized and defined in computational simulation: 
code verification and solution verification [1, 31]. Recent work by Ref. [4] argues that it is useful 
to further segregate code verification into two activities: numerical algorithm verification and 
software quality engineering (SQE), as shown in Fig. 1. Numerical algorithm verification 
addresses the mathematical correctness of the software implementation of all the numerical 
algorithms that affect the numerical accuracy of the computational results. The major goal of 
numerical algorithm verification is to accumulate sufficient evidence to demonstrate that the 
numerical algorithms in the code are implemented correctly and functioning as intended. The 
emphasis in SQE is on determining whether or not the code, as part of a software system, is 
reliable (implemented correctly) and produces repeatable results on specified computer hardware 
and in a specified software environment, including compilers, libraries, and so forth. SQE 
procedures are primarily needed during software development, testing, and modification.  
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Figure 1 Integrated view of code verification in computational simulation [5]. 

 
Numerical algorithm verification, SQE, and solution verification, are fundamentally 

empirical. Specifically, these activities are based on observations, comparisons, and analyses of 
the code results for individual executions of the code. Numerical algorithm verification focuses on 
careful investigations of topics such as spatial and temporal convergence rates, iterative 
convergence, independence of solutions to coordinate transformations, and symmetry tests related 
to various types of boundary conditions. Analytical or formal error analysis is inadequate in 
numerical algorithm verification because it is the code itself that must demonstrate the analytical 
and formal results of the numerical analysis. Numerical algorithm verification is usually 
conducted by comparing computational solutions with highly accurate solutions. 

 
Figure 1 depicts a top-down process with two main branches of code verification: numerical 

algorithm verification and SQE practices [5]. Numerical algorithm verification, discussed in 
Section 2.1.2, focuses on accumulating evidence to demonstrate that the numerical algorithms in 
the code are implemented correctly and functioning properly. The main technique used in 
numerical algorithm verification is testing, which is alternately referred to in this paper as 
algorithm testing or simply as code verification. SQE activities include practices, procedures, and 
processes that are primarily developed by researchers and practitioners in the computer science 
and IEEE communities. Conventional SQE emphasizes processes (management, planning, 
acquisition, supply, development, operation, and maintenance), as well as reporting, 
administrative, and documentation requirements. A key element, or process, of SQE is software 
configuration management, which is composed of configuration identification, configuration and 
change control, and configuration status accounting. These three activities are primarily directed 
toward programming correctness in the source program, system software, and compiler software. 
As shown in Fig. 1, SQE and testing can be divided into static analysis, dynamic testing, and 
formal analysis. Dynamic testing can be further divided into such elements of common practice as 
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regression testing, black-box testing, and glass-box testing. From an SQE perspective, Fig. 1 could 
be reorganized such that all the types of algorithm testing listed on the left, under numerical 
algorithm verification, could be moved under dynamic testing. However, the computer science and 
IEEE communities have shown no formal interest in the development of the testing procedures 
listed under numerical algorithm verification. These testing procedures, on the other hand, 
dominate code development practice in the traditional CS&E communities. 

 
Unfortunately, as discussed in Ref. [32], when solving complex PDEs, a computational 

scientist finds it virtually impossible to decouple the distinct problems of mathematical 
correctness, algorithm correctness, and software-implementation correctness. For instance, 
algorithms often represent nonrigorous mappings of the mathematical model to the underlying 
discrete equations. Two examples of such mappings are (1) approximate factorization of 
difference operators, and (2) algorithms that are derived assuming high levels of smoothness of the 
dependent variables in the PDEs, when in reality the algorithms are applied to problems with little 
or no continuity of the derivatives of the variables. Whether such algorithms produce correct 
solutions to the PDEs cannot be assessed without executing the code on specific problems; the 
execution of the code is, in turn, coupled to the software implementation. One consequence of 
these couplings among mathematics, algorithms, and the software implementation is that the 
source of a numerical inaccuracy cannot be easily identified. These couplings also suggest that 
there is a greater overlap between PDE complexities, discrete mathematics, and SQE than some 
practitioners might prefer. 

 
Solution verification centers on the quantitative estimation of the numerical accuracy of a 

given solution to the PDEs. Because, in our opinion, the primary emphasis in solution verification 
is significantly different from that in both numerical algorithm verification and SQE, we believe 
solution verification could also be referred to as numerical error estimation. That is, the primary 
goal of solution verification is to estimate the numerical accuracy of a given solution, typically for 
a nonlinear PDE with singularities and discontinuities. The assessment of numerical accuracy is a 
key activity in computations used for validation, as well as those generated for specific 
applications. Numerical error estimation is strongly dependent on the quality and completeness of 
code verification. 

 
The two basic approaches for estimating the error in a numerical solution to a PDE are a 

priori and a posteriori error estimation techniques. An a priori approach only uses information 
about the numerical algorithm that approximates the partial differential operators and the given 
initial and boundary conditions. A priori error estimation is a significant element of classical 
numerical analysis for PDEs, especially those underlying finite element methods and finite volume 
methods [1, 33-38]. An a posteriori approach can use all the a priori information as well as the 
computational results from previous numerical solutions, e.g., solutions using different mesh 
resolutions or solutions using different order-of-accuracy methods. We believe that the only way 
to achieve a quantitative estimate of numerical error in practical cases of nonlinear, complex PDEs 
is by using a posteriori error estimates. 

 
A posteriori error estimation has primarily been performed through the use of either 

Richardson extrapolation [1] or more sophisticated estimation techniques that are based on finite 
element approximations [39, 40]. Richardson extrapolation uses solutions on a sequence of 
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carefully constructed meshes having different levels of mesh refinement to estimate the spatial 
discretization error. This method can also be used on a sequence of solutions with varying time-
step increments to estimate the temporal discretization error. Richardson’s method can be applied 
to any discretization procedure for differential or integral equations, e.g., finite difference 
methods, finite element methods, finite volume methods, spectral methods, and boundary element 
methods. As Roache [1] points out, Richardson’s method produces different estimates of error and 
uses different norms than the traditional a posteriori error methods used in finite elements [35, 
41]. The Grid Convergence Index (GCI) method, based on Richardson’s extrapolation, was 
developed by Roache to assist in the estimation of mesh resolution error [1, 42, 43]. 

 

2.1.2 Code Verification Procedures 

Considering the numerical solution of PDEs, code verification comprises the activities of 
(1) defining appropriate benchmarks for the evaluation of solution accuracy and (2) determining 
what constitutes satisfactory performance of the algorithms on the benchmarks. Code verification 
relies on the comparison of computational solutions to the “correct answer.” The correct answer is 
provided by highly accurate solutions for a set of well-chosen benchmarks, and this answer can 
only be known in a relatively small number of isolated cases. These cases therefore assume a very 
important role in code verification and should be carefully formalized in test plans that describe 
how the code will be verified. 

 
Figure 2 depicts a method that uses exact or highly accurate solutions to the PDEs to detect 

numerical algorithm deficiencies and programming errors. The conceptual model is constructed by 
(1) considering the important physics of interest that are relevant to the system being analyzed and 
(2) determining the system response quantities (SRQs) that are needed for the application of 
interest. The mathematical model is derived from the conceptual model. The mathematical model 
is typically given by a set of PDEs and all their associated input data, e.g., initial conditions, 
boundary conditions, and material properties. The mathematical model is the general model for the 
application of interest, whereas the exact and highly accurate solutions to the PDEs are special-
case solutions of the mathematical model. For these special cases, benchmark solutions can be 
computed. 

 
The equations in the mathematical model are discretized, i.e., mapped from derivatives and 

integrals to algebraic equations, and solution procedures are developed using the selected 
numerical algorithms. The discretized equations are then programmed in the computer code, 
creating a computational model. When the computational model is executed to solve the 
benchmark problem, the model produces the computational results of interest. The computational 
results are then compared with the benchmark solution results, and any differences between the 
two results are evaluated. Comparisons are typically made for various SRQs of interest. The 
comparisons are usually examined along boundaries of the solution domain or error norms are 
computed over the entire solution domain so that the accuracy of various SRQs can be determined. 
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Figure 2 Method to detect sources of errors in code verification. 

 
Probably the most important challenge in the design and computation of verification 

benchmarks for use in the process depicted in Fig. 2 is to assess the mathematical accuracy of the 
benchmark solution. The AIAA Guide [17] suggests the following hierarchical organization with 
respect to the accuracy of benchmark solutions (from highest to lowest): analytical solutions, 
highly accurate numerical solutions to the ODEs, and highly accurate numerical solutions to the 
PDEs. In the AIAA Guide, as well as in Ref. [5], analytical solutions included manufactured 
solutions that were constructed by the “Method of Manufactured Solutions” (MMS) [1]. Recently, 
however, the present authors have concluded that the manufactured solutions should be considered 
as a separate type of highly accurate solutions. This conclusion was based on two reasons: (a) 
manufactured solutions do not correspond to physically meaningful phenomena, and (b) they do 
not suffer from numerical accuracy issues that commonly occur with analytical solutions. Thus, 
the hierarchical organization presented in this paper is expanded to include the following four 
types of highly accurate solutions (from highest to lowest): (type 1) manufactured solutions, (type 
2) analytical solutions, (type 3) highly accurate numerical solutions to the ODEs, and (type 4) 
highly accurate numerical solutions to the PDEs. These types are discussed briefly below, though 
additional detail is given for manufactured solutions because they are not widely used and not 
widely understood. 

 
Manufactured solutions (type 1) are specifically constructed for testing numerical algorithms 

and computer codes [1, 44]. The MMS allows one to custom-design verification solutions by 
altering the original PDEs of interest in the mathematical model (Fig. 2). A specific form of the 
solution function is chosen and then the original PDE of interest is modified such that the chosen 
solution function satisfies the modified PDE. The solution function is inserted into the original 
PDE, and all the derivatives are obtained through symbolic manipulation. Typically, these 
derivatives are obtained by using symbolic manipulation software such as MATLAB® or 
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Mathematica®. The equation is rearranged such that all remaining terms in excess of the terms in 
the original PDE are grouped into a forcing-function, or source term, on the right-hand side of the 
PDE. With this new source term, the assumed solution function satisfies the new PDE exactly. 
When this source term is added to the original PDE, one recognizes that we are no longer dealing 
with physically meaningful phenomena, although we remain in the domain of mathematical 
interest. This realization can cause some researchers or analysts to claim that the solution is no 
longer relevant to computational simulation. The fallacy of this argument is apparent by noting 
that in verification we are only dealing with testing the numerical algorithms and with coding, not 
the relationship of the code results to physical responses of the system. Because the solution to the 
modified PDE was “manufactured,” the boundary conditions for the new PDE are analytically 
derived from the chosen solution. For the three types of common boundary conditions, one can use 
the chosen solution function to (a) simply evaluate the solution on any boundary of interest, i.e., a 
Dirichlet condition; (b) analytically derive a Neumann type boundary condition and apply it on 
any boundary; and (c) analytically derive a boundary condition of the third kind and apply it on 
any boundary. The MMS is appropriately described as finding the problem, i.e., the PDE, for 
which a solution has been assumed. 

 
Using the MMS in code verification requires that the analytically derived source term, 

containing only algebraic expressions, be inserted into the code being tested. The MMS verifies 
many numerical aspects in the code, such as the mathematical correctness of the numerical 
algorithms, the spatial-transformation technique for grid generation, the grid-spacing technique, 
and the absence of coding errors in the software implementation. As pointed out by a number of 
researchers of this topic, e.g., Refs. [1, 44], solutions in the MMS must be carefully chosen to 
achieve the desired test results. For example, solution forms should be chosen so that as many 
terms as possible in the original PDE produce nonzero values during the computation of the 
solution. Such terms could include submodels that are part of the set of PDEs, as well as any 
mathematical transformations of physical space to computational space. 

 
Analytical solutions (type 2) are closed-form solutions to special cases of the PDEs defined 

in the mathematical model. These closed-form solutions are commonly represented by infinite 
series, complex integrals, and asymptotic expansions. Numerical methods having known 
reliability and accuracy must be used to compute the infinite series, complex integrals, and 
asymptotic expansions to obtain the solutions of interest. The accuracy of these solutions, 
particularly if they are infinite series or asymptotic expansions, must be carefully quantified; and 
quantifying the accuracy of the solutions can be very challenging. The most significant practical 
shortcoming of classical analytical solutions is that they exist only for very simplified physics, 
material properties, and geometries. 

 
The third type of highly accurate solutions consists of numerical solutions to special cases of 

the general PDEs that can be mathematically simplified to ODEs. The ODEs can be either initial 
value problems or two-point boundary value problems. The ODEs commonly result from 
simplifying assumptions to the original PDEs. For example, we may make the assumptions that 
are needed to simplify the original PDEs given in three dimensions so that one obtains one-
dimensional ODEs. Another example is to use simple geometries that allow similarity variables to 
be constructed for the original PDE, resulting in an ODE. Once an ODE has been obtained, a 
highly reliable and accurate ODE solver must then be used to compute the numerical solution. 
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In fluid dynamics, some well-known ODE benchmarks are stagnation point flow, specialized 

cases of laminar flow in two dimensions, the Taylor-Maccoll solution for inviscid flow over a 
sharp cone, and the Blasius solution for laminar flow over a flat plate. Note that the Blasius 
solution would be a useful benchmark for assessing the accuracy of a CFD code that solves the 
boundary layer equations. However, the Blasius solution would not be a good benchmark for 
testing a Navier-Stokes code because the Blasius solution also relies on the approximations 
assumed in the boundary layer theory. There is a difference between a highly accurate Blasius 
solution and a highly accurate Navier-Stokes solution because of the different assumptions made 
in the two physics models. The modeling assumptions must be the same between the benchmark 
solution and the code being tested. Some argue that the solutions obtained from two closely 
related physics models may be “adequate.” However, when small differences in solutions exist, 
one cannot distinguish between slight differences due to modeling assumptions versus a coding 
error. 

 
The fourth type of highly accurate solutions consists of numerical solutions to more complex 

PDEs, i.e., more complex than the three types just discussed. The accuracy of numerical solutions 
to more complex PDEs clearly becomes more questionable when such solutions are compared 
with manufactured solutions, analytical solutions, or ODE solutions. The numerical reliability of a 
type four solution is itself a factor that is hard to separate from the verification task the benchmark 
is intend to perform. In the literature, for example, one can find descriptions of computational 
simulations that are considered to be “benchmark solutions” by the author, but that are later found 
by other researchers to be lacking. And although it is common practice to conduct code-to-code 
comparisons, we argue that these kinds of comparisons are of limited value unless highly 
demanding requirements are imposed on the numerical solution that is considered to be the 
“benchmark” [45]. These requirements are discussed in detail in Section 3.1. 

 
In code verification, the key feature to determine is the observed, or demonstrated, order of 

convergence using multiple numerical solutions. As discussed in Refs. [1, 44], Richardson 
extrapolation is used in combination with the known exact solution and results from two different 
mesh resolutions to determine the observed order of convergence from a code. A typical plot of 
observed order of convergence versus mesh resolution is shown in Fig. 3. When the mesh is well-
resolved in the spatial dimension, the numerical solution enters the asymptotic convergence 
region. In this region, the observed order of convergence becomes approximately constant, 
meaning that the error decreases at a fixed rate as the mesh is further resolved. By computing the 
observed order of convergence in testing a code, an analyst can make two strong statements about 
accuracy. First, if the observed order is greater than zero, then the code converges to the correct 
solution as the mesh is refined. If the observed order of convergence is zero, then the code will not 
converge to the correct answer. Second, if the observed order of convergence matches (or nearly 
matches) the formal order of convergence, then the code demonstrates that it can reproduce the 
theoretical order of convergence of the numerical method. The theoretical order of convergence of 
a complex set of numerical algorithms may actually not be known rigorously, or it may be the case 
that the scheme is a mixed-order scheme. For complex algorithms, special techniques must then be 
employed when using the MMS [1, 44].  
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Figure 3 Observed order of convergence as a function of mesh resolution for 

two Navier-Stokes codes [46]. 

 
Researchers have found a number of reasons why the observed order of convergence can be 

less than the formal accuracy when the latter is rigorously known. Some of the reasons are as 
follows: (1) a programming error exists in the computer code; (2) the numerical algorithm is 
deficient is some unanticipated way; (3) there is insufficient grid resolution such that the grid is 
not in the asymptotic convergence region of the power-series expansion for the particular system 
response quantity (SRQ) of interest, (4) the formal order of convergence for interior grid points is 
different from the formal order of convergence for boundary conditions involving derivatives, 
resulting in a mixed order of convergence over the solution domain; (5) singularities, 
discontinuities, and contact surfaces are interior to the domain of the PDE; (6) singularities and 
discontinuities occur along the boundary of the domain; (7) the mesh resolution changes abruptly 
over the solution domain; (8) there is inadequate convergence of an iterative procedure in the 
numerical algorithm; and (9) boundary conditions are overspecified. It is beyond the scope of this 
paper to discuss the reasons listed above in detail; however, some of the representative references 
in these topics are [1, 33, 44, 47-56].  

 



 
 
 
 

 
21 

 
 

2.2 Validation Activities 

2.2.1 Fundamentals of Validation 

Some researchers and engineering standards documents [4, 5, 17-19, 57] have identified 
three key, and distinct, issues in validation: (1) quantification of the accuracy of the computational 
model by comparing its responses with experimentally measured responses, (2) interpolation or 
extrapolation of the computational model to conditions corresponding to the intended use of the 
model, and (3) determination if the estimated accuracy of the computational model, for the 
conditions of the intended use, satisfies the accuracy requirements specified. The definition of 
validation, given at the beginning of Section 2, is not particularly clear, however, about the 
identification of these issues. Consequently, this definition of validation can be interpreted to 
include all three issues, or interpreted to only include the first issue. Figure 4 depicts these three 
issues, as well as the input information required by these issues. 

 

 
 

Figure 4 Three aspects of model validation. 

 
It is clear from Fig. 4 that the quantification of model accuracy (issue 1) obtained by 

comparing responses from the computational model with experimentally measured responses is 
distinctively different from prediction, e.g., extrapolation of the model beyond the domain of 
validation to the conditions of the intended use (issue 2). The interpolation or extrapolation of the 
model for its intended use must include the estimated uncertainty in the prediction, which is then 
compared with the accuracy requirements so that a decision can be made whether the prediction 
accuracy is adequate (issue 3). The most recent engineering standards document devoted to V&V, 
referred to as the ASME Guide [18], considers all three aspects of validation to be fundamentally 
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combined in the term “validation.” The AIAA Guide [17], on the other hand, takes the view that 
“validation” is only concerned with the first issue, i.e., assessment of model accuracy by 
comparison with experimental responses. Uncertainty is involved in this assessment, both in terms 
of experimental measurement uncertainty and in terms of the computational simulation, primarily 
because input quantities needed from the experiment either are not available or are imprecisely 
characterized. The second and third aspects (issues 2 and 3) are treated in the AIAA Guide as 
separate activities related to predictive capability. The AIAA Guide recognizes that predictive 
capability uses the assessed model accuracy as input and that predictive capability also 
incorporates (a) additional uncertainty estimation resulting from interpolation or extrapolation of 
the model beyond the existing experimental database to future applications of interest and (b) 
comparison of the accuracy requirements needed by a particular application relative to the 
estimated accuracy of the model for that specific extrapolation to the applications of interest. 

 
The two perspectives of validation discussed above are useful and workable, but the formal 

terminology for validation clearly can mean different things. Thus, one must be very clear when 
speaking and writing on the subject of validation. As a separate topic, whether the system of 
interest, e.g., component of a nuclear power plant, meets its performance or safety requirements is, 
of course, a completely separate topic from the issues depicted in Fig. 4. Simply put, a model of a 
system could be accurate, but the system itself could fail to meet requirements. 

 
The hydrology community [58-60] in Europe has independently developed ideas about V&V 

that are very similar to those being developed in the United States. Rykiel [58] makes an important 
practical point, especially to analysts and decision makers, about the difference between the 
philosophy-of-science viewpoint and the practitioner’s view of validation: “Validation is not a 
procedure for testing scientific theory or for certifying the ‘truth’ of current scientific 
understanding ….Validation means that a model is acceptable for its intended use because it meets 
specified performance requirements.” Refsgaard and Henriksen [60] have recommended 
terminology and fundamental procedures for V&V that are applicable to a much wider range of 
simulations than just hydrological modeling. Their definition of validation makes the two aspects 
of validation in Fig. 4 clear: “Model Validation: Substantiation that a model within its domain of 
applicability possesses a satisfactory range of accuracy consistent with the intended application of 
the model.” Refsgaard and Henriksen also have stressed another crucial issue that is corroborated 
by the AIAA Guide and the ASME Guide: “Validation tests against independent data that have not 
also been used for calibration are necessary in order to be able to document the predictive 
capability of a model.” In other words, the major challenge in validation is to perform an 
assessment of the model in a “blind” test with experimental data, whereas the key issue in 
calibration is to adjust the physical modeling parameters to improve agreement with experimental 
data. It is difficult, and sometimes impossible, to make blind comparisons, e.g., when well-known 
benchmark validation data are available for comparison. However, we must be very cautious in 
making conclusions about the predictive accuracy of models when the analyst has seen the data. 
Knowing the “correct answer” beforehand is extremely seductive, even to a saint. 

 
An additional fundamental, as well as practical, aspect of validation in a real engineering 

environment has been the construct of a validation hierarchy [17, 18]. Because it is neither feasible 
nor practical to conduct true validation experiments on most complex or large-scale systems, the 
recommended method is to use a building-block approach. This approach divides the complex 
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engineering system of interest into three or more progressively simpler levels of complexity 
(tiers): subsystem cases, benchmark cases, and unit problems. In the reactor safety field, a similar 
concept, referred to as separate effects testing, has been used for a long time. The strategy in the 
tiered approach is to assess how accurately the computational responses compare with the 
experimental responses at multiple levels of physics coupling and geometric complexity. The 
tiered approach is very useful for several reasons: (1) the hierarchy can represent a large range of 
complexity in systems, physics, material, and geometry; (2) the hierarchy requires a wide range of 
experienced individuals to construct it, providing the opportunity for discovering subsystem or 
component interactions that had not been previously recognized; (3) the hierarchy supports testing 
of models, or submodels, at any of the tiers of complexity; and (4) different hierarchies would be 
constructed for analyzing the system under different environments, e.g., normal, abnormal, and 
hostile environments. In addition, the tiered approach recognizes that the quantity, accuracy, and 
cost of information that is obtained from experiments vary radically over the range of tiers. 

 
Importantly, each comparison of computational responses and experimental responses in a 

validation hierarchy allows an inference of model accuracy to be made relative to the tiers that are 
immediately above and below the tier where the comparison is made. The construction and use of 
a validation hierarchy is particularly important in situations where the complete system of interest 
cannot be tested. For example, the nuclear power industry has used constructs like a validation 
hierarchy in safety studies and probabilistic risk assessment for abnormal environment scenarios. 

 

2.2.2 Characteristics of Validation Experiments 

With the critical role that validation experiments play in the assessment of model accuracy 
and predictive capability, it is reasonable to ask what a validation experiment is and how a 
validation experiment is different from other experiments. In responding to such questions, we 
first suggest that traditional experiments could generally be grouped into three categories. The first 
category comprises experiments that are conducted primarily to improve the fundamental 
understanding of some physical process, or discover new phenomena. Sometimes these are 
referred to as scientific discovery experiments. The second category consists of experiments that 
are conducted primarily for constructing or improving mathematical models of fairly well-
understood physical processes. Sometimes these are referred to as model calibration experiments. 
The third category includes experiments that determine or improve the reliability, performance, or 
safety of components, subsystems, or complete systems. These experiments are sometimes called 
“proof tests” or “system performance tests.” 

 
The present authors and their colleagues [2, 3, 20, 61-64] have argued that validation 

experiments constitute a new type of experiment. A validation experiment is conducted for the 
primary purpose of determining the predictive accuracy of a computational model or group of 
models. In other words, a validation experiment is designed, executed, and analyzed for the 
purpose of quantitatively determining the ability of a mathematical model and its embodiment in a 
computer code to simulate a well-characterized physical process or set of processes. Thus, in a 
validation experiment “the code is the customer”; or, if you like, “the computational scientist is the 
customer.” Only during the last 10 to 20 years has computational simulation matured to the point 
where it could even be considered as a customer in this sense. As modern technology increasingly 
moves toward engineering systems that are designed, and possibly even fielded, based 
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predominately on CS&E, CS&E itself will increasingly become the customer of experiments. 
 
During the past several years, a group of researchers at Sandia National Laboratories has 

been developing methodological guidelines and procedures for designing and conducting a 
validation experiment [2, 4, 20-22, 61-64]. These guidelines and procedures have emerged as part 
of a concerted effort in the NNSA ASC program to provide a rigorous foundation for V&V for 
computer codes that are important elements of the U.S. nuclear weapons program [65]. 
Historically, the guidelines presented below were first developed in their current form in a joint 
computational and experimental program conducted in a wind tunnel, though they apply to a wide 
range of CS&E.  

 
Guideline 1: A validation experiment should be jointly designed by experimentalists, model 

developers, code developers, and code users working closely together throughout the 
program, from inception to documentation, with complete candor about the strengths and 
weaknesses of each approach. 

Guideline 2: A validation experiment should be designed to capture the essential physics of 
interest, including all relevant physical modeling data and initial and boundary conditions 
required by the code. 

Guideline 3: A validation experiment should strive to emphasize the inherent synergism 
between computational and experimental approaches. 

Guideline 4: Although the experimental design should be developed cooperatively, 
independence must be maintained in obtaining both the computational and experimental 
results. 

Guideline 5: A hierarchy of experimental measurements of increasing computational 
difficulty and specificity should be made, for example, from globally integrated quantities 
to local measurements. 

Guideline 6: The experimental design should be constructed to analyze and estimate the 
components of random (precision) and bias (systematic) experimental errors. 

 
The guidelines above are applicable to any tier in the validation hierarchy discussed earlier. 

A detailed discussion of the six guidelines is beyond the scope of the present work. The reader is 
referred to the given references in the previous paragraph for an in-depth discussion of what the 
guidelines mean, how they can be implemented, and the difficulties that may be encountered when 
conducting validation experiments. Some of these guidelines have been incorporated into the 
recommendations for the construction of validation benchmarks in Section 4.1. 

 
More recent efforts have been made to optimize the effectiveness and value of validation 

experiments [64]. Our recommended approach consists of the following three strategies: (1) early 
in the planning process, define the goals and the expected results of the validation activity; (2) 
design the validation experiment by using the code in a predictive sense and also account for the 
limitations in capability of the experimental facility; and (3) develop a well-thought-out plan for 
analyzing and quantitatively comparing the computational and experimental responses. 

 
The first strategy, defining the goals and expected results, deals with issues such as 

(a) determining how the validation activity relates to the application of interest (typically through 
the validation hierarchy); (b) identifying the physics modeling issues that will be tested; 
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(c) deciding whether the validation activity is intended to severely test the model to identify its 
weaknesses or whether it is intended to make the model look good, for example, to a potential 
customer; (d) specifying what will be required from both the computational and experimental 
aspects of the validation activity to conclude that each aspect was deemed a “success”; and (e)  
defining the steps that would be taken if the computational results agree very poorly with the 
experimental measurements. 

 
In the second strategy above, “design” means using the code to directly guide the design 

features of the experiment, including such elements as geometry, initial and boundary conditions, 
material properties, sensor locations, and diagnostic techniques (e.g. strain gauges, thermocouples, 
optical techniques, and radiation detectors). Even if the accuracy of the code predictions is not 
expected to be high, the code can frequently guide much of the design of the experiment. For 
example, such code involvement minimizes the risk that a validation experiment will produce 
measurements that cannot be synthesized by the computational model.  The code and the goals of 
the validation activity can also guide the accuracy that is needed for the experimental 
measurements as well as the number of experimental realizations that are needed to obtain a 
specific statistically significant result. Suppose, through a series of exploratory calculations for a 
particular application of the code, an unexpectedly high sensitivity to certain physical parameters 
is found. If this unexpected sensitivity has an important impact on the application of interest, a 
change in the design of the validation experiment may be needed, or indeed, a completely separate 
validation experiment may be needed. In addition, the limitations of the experimental facility 
should be directly factored into the design of the experiment. Examples of facility or diagnostic 
limitations are (a) an inability to obtain the range of parameters (e.g., load, temperature, velocity, 
time, radiation flux) needed to meet the goals of testing the physics models; (b) an inability to 
obtain the needed accuracy of measurements, including both SRQs and model input quantities; 
and (c) an inability to measure all of the input quantities (e.g., initial conditions, boundary 
conditions, material properties) needed for the code simulation. 

 
The third strategy above refers to the importance of rigorously analyzing and quantitatively 

comparing the computational and experimental responses. As is shown in the top portion of Fig. 4, 
methods for quantitative comparison, i.e., validation metrics, have become an active topic of 
research [4, 19, 66-78]. High quality validation metrics must use statistical procedures to compare 
the results of code calculations with the measurements of validation experiments. Because we 
stress that the overarching goal of validation experiments is to develop quantitative confidence so 
that the code can be used for its intended application, we have argued for the central role of 
validation metrics. Stated differently, we believe that predictive capability should be built directly 
on quantitatively assessed model accuracy, as opposed to making vague or ambiguous declarations 
that the model is “valid,” or a foundation built on calibration of the model to all available data. 
The statistical inference literature provides a long history of statistical procedures that were 
developed for closely related inference tasks. Most of these procedures, however, yield 
probabilistic statements of “truth” or “falsehood,” such as hypothesis testing, or the procedures are 
directed at the calibration of models, such as Bayesian updating. We believe it is important to 
refocus these procedures as much as possible on each of the three aspects of validation discussed 
in Fig. 4. 
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3  Recommendations for Verification Benchmarks 
 
Section 3 presents our recommendations for constructing and using strong-sense benchmarks 

(SSBs) for code verification. These recommendations are directed toward improving the quality, 
accuracy, and documentation of existing benchmarks, as well as toward the development of new 
benchmarks. In the near term, these recommendations will likely be more valuable to 
computational analysts who have already developed some informal benchmarks. This audience 
would begin with an existing benchmark and follow the recommendations to develop the 
benchmark into an SSB. Importantly, an SSB should enable benchmark users and others to 
understand in detail the process that the benchmark developers followed to solve the benchmark 
problem. These recommendations would also be helpful to developers of new verification 
benchmarks in understanding the requirements of SSBs. 

 
Our recommendations for verification benchmarks can be applied to many fields of physics 

and engineering and thus are not specific to any discipline. In Section 3.1, we discuss the features 
of constructing and also documenting a verification benchmark. Section 3.2 explains how to 
compare a code being tested (referred to as the candidate code) to the benchmark results. It is 
important to state here that Section 3 does not address how to write the computer code for a 
verification benchmark. 

 

3.1 Constructing Verification Benchmarks 

High-quality verification benchmarks require both detailed documentation and exceptional 
procedures to ensure the accuracy of the computed results. The recommended documentation of a 
verification benchmark contains four elements (or parts): (1) conceptual description, 
(2) mathematical description, (3) accuracy assessment, and (4) additional user information. These 
parts are described in Sections 3.1.1 through 3.1.4, respectively.  

 

3.1.1 Conceptual Description  

The first part of the verification benchmark documentation is the conceptual description, i.e., 
information appropriate for the development of a conceptual model of the benchmark. The format 
of this description should be textual; no equations or symbols should be used. The reason for 
recommending that a textual description be given is that this format would be most usable in an 
electronic database of verification benchmarks that we believe should be constructed in the future. 
Our ideas about an electronic database are similar to those expressed by Rizzi and Vos [15]. With 
such a database, users could search for key words (provided in the textual benchmark descriptions) 
that would help them find benchmarks that might be applicable to particular problems of interest. 
The conceptual description should include five aspects of the verification benchmark, as discussed 
below. Note that the purpose of the benchmark is part of the fifth aspect. 

 
The first aspect of the conceptual description should specify the general classes of physical 

processes being modeled in the benchmark. We refer to this aspect as the “title” of the benchmark. 
In fluid dynamics, for example, the description should give the general characteristics, such as 
steady or unsteady, class of fluid assumed (e.g., continuum or noncontinuum, viscous or inviscid, 
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Newtonian or non-Newtonian, Reynolds-Averaged Navier-Stokes (RANS) equations or large 
eddy simulation (LES) or direct numerical simulation, compressible or incompressible, single 
phase or multiphase), spatial dimensionality, perfect gas, and all auxiliary models that are assumed 
(e.g., assumptions for a gas with vibrationally excited molecules; assumptions for chemically 
reacting gas; thermodynamic property assumptions; transport property assumptions; assumptions 
for chemical models, reactions, and rates; and turbulence model assumptions). In solid dynamics, 
for example, the description should include assumptions about equations of state, such as the 
choice of independent variables in tables; assumptions about solid behavior varying from elasticity 
to visco-plasticity; assumptions about material failure; and assumptions about the mixture 
behavior of complex nonhomogeneous materials. Note that the description should be given with 
respect to the classes of physics that are modeled in the benchmark, not the actual physics of 
interest in the particular application of interest. 

 
The second aspect of the conceptual description should specify the initial conditions and 

boundary conditions exactly as they are characterized in the formulation of the conceptual model. 
Some examples in fluid dynamics are as follows: steady-state flow between parallel plates with 
infinite dimension in the plane of the plates, flow over a circular cylinder of infinite length with 
undisturbed flow at infinity, and flow over an impulsively started cube in an initially undisturbed 
flow. Some examples in solid dynamics are as follows: externally applied loads or damping, 
contact models, joint models, explosive loads or impulsive loads, and impact conditions (geometry 
and velocity). Included with the boundary conditions would be a statement of all the pertinent 
geometry dimensions or nondimensional parameters characterizing the problem (if any). Note that 
a statement of “far field” boundary conditions should clearly explain exactly what was used in the 
benchmark. For example, if the numerical solution benchmark imposed an undisturbed flow 
condition at some finite distance from an object in a fluid, then that condition should be carefully 
described. However, one could also impose an undisturbed flow condition at infinity using a 
coordinate transformation away from the object by mapping infinity to a finite point. 

 
The third aspect of the conceptual description should specify various examples of important 

physical applications (or processes) to which the benchmark is relevant. Some examples in fluid 
dynamics are laminar wake flows, turbulent boundary layer separation over a smooth surface, 
impulsively started flows, laminar diffusion flames, shock/boundary layer separation, and natural 
convection in an enclosed space. Some examples in solid dynamics are linear structural response 
under impulsive loading, wave propagation excited by energy sources, explosive fragmentation, 
crater formation and evolution, and penetration events. The information in this aspect of the 
conceptual description will be particularly useful to individuals searching for benchmarks that are 
somewhat related to their actual application of interest. 

 
The fourth aspect of the conceptual description should specify the type of benchmark. As 

discussed in Section 2.1.2, the benchmark type is one of the following: (1) a manufactured 
solution, (2) an analytical solution, (3) an ODE numerical solution, or (4) a PDE numerical 
solution. If the benchmark is type 1 or type 2, then the accuracy of the benchmark should allow 
the observed order of convergence of the candidate code to be computed. If the benchmark is type 
3, or particularly type 4, it is questionable that the observed order of convergence can be computed 
for the candidate code because the accuracy of the numerical solutions from the benchmark may 
not be adequate. As a result, only an accuracy assessment of the system response quantities 
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(SRQs) of interest from the candidate solutions could be made by comparison with the benchmark 
solution. 

 
The fifth aspect of the conceptual description should specify the numerical algorithms and/or 

code features that are being tested. Of the five aspects, this aspect reinforces the purpose of the 
verification benchmark by stipulating the algorithms being tested. Some examples of numerical 
algorithms that could be tested are as follows: the numerical method to capture a strong shock 
wave in three dimensions, the numerical method to determine whether it can accurately 
approximate specific types of discontinuities or singularities that occur either within the solution 
domain or on the boundary, the numerical method to compute recontact during large plastic 
deformation of a structure, the numerical method to compute a denotation front in a granular 
mixture, and the numerical method to compute shock-induced phase transitions. The fifth aspect 
of the conceptual description should also specify whether the testing involves an isolated physics 
phenomenon or a type of physics coupling. In the latter case, for example, does the benchmark test 
the coupling of a shock wave and chemically reacting flow? or does the benchmark test the 
coupling of thermally induced stresses in addition to mechanical stresses during large plastic 
deformation of a structure? 

 
To better clarify how these five aspects would be applied in practice, we present conceptual 

descriptions, with their associated references, of four different types of benchmarks in fluid 
dynamics: 

 
Type 1 Benchmark Example (manufactured solution) 
(Ref. [79-81]) 
Title: Steady, incompressible, turbulent flow, using one- and two-equation turbulence models 

for the RANS equations 
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional 

Cartesian coordinates, arbitrary boundary geometry, boundary conditions of the first, 
second, and third kind can be specified 

Related Physical Processes: Incompressible, internal or external turbulent flows, wall-bounded 
and free-shear-layer turbulent flows 

Type of Benchmark: Manufactured solution  
Numerical and/or Code Features Tested: Interaction of inertial, convective, and turbulence 

terms for RANS models 
 
Type 2 Benchmark Example (analytical solution) 
(Ref. [82]) 
Title: Unsteady, incompressible, laminar, Couette flow, using the Navier-Stokes equations 
Initial Conditions and Boundary Conditions: Initial-boundary value problem, two-dimensional 

Cartesian coordinates, impulsive flow between flat plates where one plate instantaneously 
accelerates relative to a stationary plate with the fluid initially at rest 

Related Physical Processes: Impulsively started, laminar flows 
Type of Benchmark: Analytical solution given by an infinite series 
Numerical and/or Code Features Tested: Interaction of inertial and convective terms in one 

dimension; initial value singularity on one boundary at time zero 
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Type 3 Benchmark Example (ODE numerical solution) 
(Ref. [82]) 
Title: Steady, incompressible, laminar flow of a boundary layer for a Newtonian fluid 
Initial Conditions and Boundary Conditions: Initial-boundary value problem, in two-

dimensional Cartesian coordinates, flow over a flat plate with zero pressure gradient 
Related Physical Processes: Attached, laminar boundary layer growth with no separation 
Type of Benchmark: Blasius solution; numerical solution of a two-point boundary value 

problem 
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in a 

boundary layer attached to a flat surface 
 
Type 4 Benchmark Example (PDE numerical solution) 
(Ref. [83]) 
Title: Steady, incompressible, laminar flow using the Navier-Stokes equations 
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional 

Cartesian coordinates, flow inside a square cavity with one wall moving at constant speed 
(except near each moving wall corner), Rl = 104 

Related Physical Processes: Attached laminar flow with separation, laminar free-shear layer, 
flow with multiply induced vortices 

Type of Benchmark: Numerical solution given by a finite element solution 
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in two 

dimensions; two points on the boundary that are nearly singular 
 

3.1.2 Mathematical Description 

The second part of the verification benchmark documentation is the mathematical 
description, i.e., a description of the mathematical model of the benchmark. The mathematical 
description should clearly and completely document the PDEs or ODEs for the mathematical 
problem being solved. We want to stress here that the mathematical description of the benchmark 
must not include any feature of the discretization or numerical methods used to solve the PDEs 
and ODEs. Our recommendations for preparing the mathematical description are presented below. 

 
1. Clearly state all the assumptions used to formulate the mathematical problem description. 
2. Define all symbols used in the mathematical description of the benchmark, including any 

nondimensionalization used, and units of all dimensional quantities 
3. State the PDEs, ODEs, or integral equations being solved, including all secondary models, 

or submodels. The mathematical statement of these models must be given in differential 
and/or integral form (i.e., continuum mathematics form), as opposed to the discretized 
form. Some examples of secondary models that could be given are equation-of-state 
models, thermodynamic models, transport property models, chemical reaction models, 
turbulence models, emissivity models, constitutive models for materials, material contact 
models, externally applied loads, opacity models, and neutron cross section models.  

4. If the solution is given by a manufactured solution, the source terms for the manufactured 
solution should be included in the documentation in two forms: (a) a traditional form for 
analytical equations and (b) a form that is programmed in a commonly used programming 
language such as C++ or FORTRAN. One should be able to electronically copy the 
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programming for the source terms and insert it into a computer code, or into an input file 
for a code.  

5. Give a complete and unambiguous statement of all the initial conditions and boundary 
conditions used in the mathematical statement (i.e., item #3 above). The stated initial 
conditions and boundary conditions are those that are actually used for the solution to the 
PDEs and ODEs, not those that one would like to use in some practical application of the 
computational model. For example, if the benchmark solution is a numerical solution of a 
PDE (a type 4 benchmark), and the numerical solution uses an outflow boundary condition 
imposed at a finite distance from the flow region of interest, then that condition (in 
continuum mathematics form) should be given. 

6. State all of the SRQs of interest that are produced by the benchmark for comparison with 
the candidate code solution. The SRQs could be dependent variables in the mathematical 
model, functionals of dependent variables, or various types of probability measures of 
dependent variables or functionals. Examples of functionals are forces and moments acting 
on an object in a flow field, heat flux to a surface, location of a boundary-layer separation 
or reattachment line, and location of a vortex center. Functionals of interest should be 
stated in continuum mathematics form, not in discretized form. Examples of probability 
measures are probability density functions and cumulative distribution functions of the 
SRQs of interest. 

7. If any quantities provided in the description of the mathematical model are given by a 
random variable or are uncertain, provide a precise characterization of the quantity. For 
example, a) if a quantity is given by a probability density function, then the family of 
distributions should be stated, along with all the parameters defining a specific distribution, 
and b) if a quantity is given by an interval, e.g., no likelihood is specified over the interval, 
then the end points of the interval should be specified. 

 
The overarching goal of this part of the verification benchmark documentation is to provide 

an unambiguous, reproducible mathematical characterization of the benchmark problem that 
eliminates all potential disagreement about what was mathematically intended in the mathematical 
model. We believe that this goal must be ruthlessly pursued and achieved. Any vagueness, 
ambiguity, or missing detail in the mathematical model must be replaced with explicit 
specification. 

 
A comment should be made here about the practice of incorporating numerical 

approximations or features directly into the mathematical models of the physics. An example in 
fluid dynamics is seen in many LES models of turbulence. Many researchers who solve the LES 
equations will define the length scale of turbulence to be modeled as that determined by the local 
discretization scale used in the numerical simulation. That is, the subgrid turbulence scale is 
defined to be all spatial scales smaller than the local mesh that the researchers happen to be using. 
An example in fracture dynamics is seen in the modeling of crack propagation through a material. 
Some researchers, but thankfully fewer in recent times, will define the spatial scale of the crack tip 
radius to be the same as the local mesh resolution used in a particular numerical solution. 

 
We strongly argue against the practice of connecting physical modeling scales, either spatial 

or temporal, with numerical discretization scales. Our arguments are particularly compelling when 
verification benchmarks are being solved. The rationale for our objection is twofold. First, 
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combining physics modeling with numerical approximations intertwines two very different issues. 
Models of physics should be stated in a way that does not, in any way, depend on how the 
numerical solution is obtained. Mathematical models of physics should depend only on the spatial 
and temporal scales in the physics being modeled. Second, if a physics model is defined to be 
dependent on numerical solution approximations, then changes in the numerical approximations, 
e.g., mesh resolution, will result in changes in the physics model. Suppose one wanted to use a 
different class of numerical methods to solve the mathematical model, such as a higher-order 
method, then, even with the same mesh resolution, two different numerical solutions would exist; 
neither solution would have any meaning with respect to the differential equations stated in the 
mathematical model. Mixing physics modeling and numerical solution approximations is, in our 
view, as bad as mixing different dimensional units—it makes no sense. Physics modeling scales, 
typically dimensional scales in length or time, should be based on the physical scales that are 
captured in the differential equations of the mathematical model. 

 

3.1.3 Accuracy Assessment 

In this part of the verification benchmark documentation, the numerical accuracy of the 
benchmark should be critically assessed, and the means of assessment should be carefully 
described. Thus, preparing this part of the benchmark documentation is dependent on having 
executed the code to solve the benchmark problem. The assessment procedure and the accuracy 
assessment result should be described for each SRQ that is provided by the benchmark. The 
accuracy assessment should be provided, if appropriate, as a function of (a) spatial coordinates; 
(b) temporal coordinate; and (c) parameters provided in the mathematical model, e.g., Reynolds 
number, Mach number, externally applied load, heat flux, and boundary condition parameter. In 
general, the accuracy assessment of the SRQs depends on all the independent variables and 
parameters in the model. The purpose of this assessment is to provide a definitive pedigree for the 
benchmark accuracy that is unambiguous and objective. This task clearly becomes much more 
difficult as we progress from a type 1 benchmark to a type 4 benchmark. False pedigrees often lie 
at the heart of failed, complex benchmark efforts centered on PDE numerical solutions. Many 
managers and organizations are fond of complex, high-visibility benchmarks, but the credibility of 
these benchmarks invariably disappears when the details of the benchmarks are examined. 

 
The accuracy of a benchmark will greatly depend on the type of benchmark solution that has 

been computed. We now discuss particular accuracy assessment issues that are unique to each type 
of benchmark. 

 
Accuracy Assessment Issues for Type 1 Benchmark (manufactured solutions) 
 Manufactured solutions are all composed of well-known, elementary functions, such as 

circular functions and exponential functions. The accuracy issue in manufactured solutions 
centers on the accuracy, or correctness, of all the source terms that are derived and then 
placed on the right-hand side of the PDE. The two texts [1, 44] that deal with the MMS 
recommend a number of practices and procedures that are very helpful in using the 
method. A few of these recommendations are included here: (1) Do not try to derive the 
source terms by hand. Use symbolic manipulation software such as Mathematica® or 
MATLAB® to derive the source terms. (2) When the source terms are derived, do not try to 
program them by hand. The suggested practice is to electronically copy the terms from the 
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symbolic manipulator output directly into the software solving the PDEs. (3) To check the 
correctness of the output from the symbolic manipulation software, we recommend the use 
of two different software packages. (4) When selecting a manufactured solution form and 
its associated free parameters, choose the solution form and the parameters so that when 
the solution is substituted into the original PDE, all the terms in the original PDE are 
reasonably balanced in magnitude. This balance aids in the identification of terms that 
contain a programming error. 

 
Accuracy Assessment Issues for Type 2 Benchmark (analytical solution) 
 If the benchmark solution is given in terms of a closed-form solution, the accuracy is 

usually near machine precision. As used here, a “closed-form solution” is a solution that 
can be expressed analytically in terms of a bounded number of well-known functions. We 
also presume that the derivation of the solution can be fully comprehended by 
knowledgeable people who use it as a benchmark. If the derivation is incomplete or 
otherwise not fully available for critical scrutiny, it is unlikely that the benchmark will be 
credible. If the benchmark is not a closed-form solution, then one must very carefully 
estimate the accuracy of the solution. If the analytical solution is given by an infinite 
series, then the accuracy is determined by the rate of convergence and the number of terms 
that are included before the sequence is truncated. One cannot, in general, estimate the 
accuracy of an analytical solution given by an infinite series by simply comparing how 
much the solution changes when one more term in the infinite series has been added. If the 
analytical solution contains an integral, or an iterative solution of an algebraic or 
transcendental equation, one must estimate the numerical error involved. For example, in 
the Type 2 Benchmark Example given in Section 3.1.1, the solution for the unsteady 
Couette flow is given by an infinite series. The convergence rate of the series drastically 
depends on the time chosen. For times near zero, the convergence rate is extremely poor 
compared to large times because of the existence of the singularity when the time equals 
zero, i.e., the start of a simulation. 

 
Accuracy Assessment Issues for Type 3 Benchmark (ODE numerical solution) 
 Benchmark solutions obtained by the numerical solution to a set of ODEs can be initial 

value problems or boundary value problems. The accuracy of solutions to these problems 
primarily depends on the sophistication and reliability of the numerical integrator used to 
compute the solutions. For benchmark solutions, it is recommended that a high-order 
accuracy integration technique be used, along with a variable step-size procedure that is 
adjusted according to a per-step, relative-error criteria specified by the user. If possible, 
two different numerical integrators should be used and the results compared. It is 
recommended that the order of convergence of the ODE integrator be higher than the 
formal order of convergence of the candidate solution being tested. If a fixed-order 
accuracy method is employed, then Richardson extrapolation can be used to estimate the 
error of the numerical solution for each SRQ of interest. An example of an efficient, high-
order accuracy procedure is an embedded Runge-Kutta method of order 6 or 7. Additional 
complexity, and inaccuracy, is introduced if one numerically solves a boundary value 
problem. Solutions to boundary value problems should include user-specified control of 
the error along both boundaries. If a singularity exists along any boundary, or as an initial 
condition, then methods must be developed to estimate how the numerical error near the 
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singularity propagates into the solution domain.  
 
Accuracy Assessment Issues for Type 4 Benchmark (PDE numerical solution) 
 Benchmark solutions obtained by the numerical solution of a set of PDEs present the most 

challenging accuracy assessment issues. Compared to the first three types of benchmarks, 
type 4 benchmarks require that much more detail be provided. Our recommendations for 
conducting and documenting the accuracy assessment for a type 4 benchmark are 
presented below. Importantly, the information provided should enable someone both to 
understand the estimated accuracy of the benchmark and to evaluate the strength of the 
procedure used to estimate the accuracy. 

1. Describe all the iterative procedures and convergence criteria used in all aspects of the 
numerical solution, e.g., the iterative procedure and convergence criteria for iterative 
solution of a nonlinear boundary value problem, the iterative procedure and 
convergence criteria for intra-time-step iterations.  

2. Compute a series of solutions using at least three different mesh resolutions, and use 
Richardson extrapolation to estimate the numerical error over the entire solution 
domain for each of the SRQs of interest. Also, using the multiple mesh-resolution 
results, estimate the observed order of convergence of the solution for each SRQ, and 
compare it with the formal order of convergence expected from the method.  

It could be argued that some of the a posteriori finite element error estimation 
procedures, such as recovery methods or residual methods, could be used instead of 
Richardson extrapolation [39, 40]. We should note, however, that there are some 
practical difficulties with most of these methods. First, some methods provide global 
error norms rather than error estimates on the SRQs of interest, such as error estimates 
of local dependent variables. Second, some methods only provide error estimates to 
within some unknown constant. Third, very few methods have been developed for 
nonlinear parabolic and hyperbolic PDEs. Fourth, any substantial change to the PDE or 
any submodel requires that the error estimation equation be derived again. And fifth, it 
is poorly understood at present how a posteriori finite element error estimators are 
affected by the lack of continuity of higher derivatives of dependent variables and by 
singularities. Experience has shown that Richardson extrapolation is more robust than 
a posteriori finite element error estimators, probably because Richardson extrapolation 
is directly based on a power-series expansion of the SRQ of interest.  

3. If the benchmark problem is an initial value problem, compute a sequence of solutions 
using at least three different temporal resolutions, and use Richardson extrapolation to 
estimate the numerical error over the entire solution domain for each of the SRQs of 
interest. Also, using the multiple solutions, estimate the observed order of temporal 
accuracy and compare it with the formal order of temporal accuracy for each SRQ. In 
estimating the temporal accuracy, include the coupling of the temporal and spatial 
accuracy in the Richardson extrapolation equations. 

4. If a singularity exists inside the solution domain or on any boundary, or in the initial 
conditions, provide strong evidence that the numerical solution is not contaminated by 
error propagated away from the singularity. One method that adds credence to a 
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numerical solution with a singularity is to use two markedly different numerical 
methods to solve the same problem and then show the results from both methods for all 
SRQs of interest.  

Though technically demanding, a preferable approach for dealing with a singularity is 
to analytically eliminate the singularity from the problem in some fashion. The Type 4 
Benchmark Example given in Section 3.1.1, the driven-cavity problem, demonstrates 
some of the difficulties encountered with solutions containing singularities. Prabhakar 
and Reddy [83]) eliminated the two singularities in the moving-lid corners by replacing 
the fixed speed of the moving lid with a speed that varies spatially near each of the 
corners. They clearly state that had they not removed the singularities, their numerical 
procedure would not have converged. We are not aware of any solutions to the driven-
cavity problem published prior to Prabhakar and Reddy’s work that removed the 
singularities in the corners. As a result, we are highly suspicious of the accuracy of all 
earlier numerical solutions to the driven-cavity problem. 

 

3.1.4 Additional User Information 

The fourth part of the verification benchmark documentation should include additional 
information that would be helpful to users of the benchmarks. For example, such information 
might assist a researcher in investigating how the accuracy of a benchmark could be improved or 
how the generality of the benchmark could be extended. Similarly, if a user’s candidate solution 
did not satisfactorily compare with the benchmark, some small documented detail might help the 
user discover the cause of the discrepancy. 

 
Several pieces of information should be provided in this part of the documentation, 

regardless of the type of benchmark computed. Appropriate descriptions of the following should 
be given: (a) computer hardware used; (b) operating system and version; (c) compiler type and 
version and any pertinent compiler options used; (d) arithmetic precision; (e) programming 
language used in the source code; (f) what type and how extensive have been the code verification 
activities; (g) computer run time for each of the solutions documented in the benchmark; and, of 
course, (h) authorship of the benchmark results and their affiliated organization. Some of the 
additional information that should be included differs significantly for each type of benchmark. 
We now discuss particular information needs that are unique to each type of benchmark and also 
provide recommendations for addressing these needs. 

 
Unique Information Needs for Type 1 Benchmark (manufactured solution) 
 The symbolic manipulation software used to derive the source terms should be stated, 

along with the version number of the software. If two different symbolic manipulation 
software packages are used to serve as a check, then this should be stated. If this is done, 
one should be certain that each package is unrelated to the other. For example, the 
symbolic manipulation kernel in MATLAB® from The MathWorks is the same as the 
symbolic manipulation kernel in Maple™ from Maplesoft. 

 
Unique Information Needs for Type 2 Benchmark (analytical solution) 
 The analytical solution should be documented in the traditional form of equations and 
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explanatory text. If the benchmark solution is given by an infinite series, a description 
should be given of the method used to estimate the error due to truncation of the series. If 
all terms in the series have the same sign, then one method for estimating this error is to 
compute a curve fit of the magnitude of each term as a function of the number of the term 
in the series. If the terms have alternating signs, then a curve fit of the magnitude of the 
sum of pairs of terms can be computed. With a proper choice of functional form, the curve 
fit can then be extrapolated to infinity. Then the sum of the truncated terms can be 
computed to estimate the error due to the truncated series. If the benchmark solution is 
given by an integral or by an iterative solution of an algebraic or transcendental equation, 
the numerical method used to compute the integral and the iterative solution should be 
given. Adequate references must be provided for the analytical solution, along with its 
derivation, if possible. The references should be publicly available. 

 
Unique Information Needs for Type 3 Benchmark (ODE numerical solution) 
 A detailed description should be provided of the numerical method used to solve the ODE. 

If the numerical integrator is contained in a software package, give (a) a description and 
version number of the package and (b) information concerning what type of code 
verification has been documented on the package. If possible, the software package should 
be included in the additional user information portion of the benchmark. Also, if any 
tabular data is used in any mathematical submodel, then all of the numerical data should be 
provided, along with a description of the interpolation procedure used for the tabular data. 

 
Unique Information Needs for Type 4 Benchmark (PDE numerical solution) 
 A detailed description should be provided of all of the numerical methods used in all 

aspects of the solution procedure. Our recommendations for preparing this information 
include the following: 

• Describe all of the numerical algorithms used to discretize the PDEs and all submodels, 
including any parameters or constants that might be associated with the numerical 
algorithms, e.g., artificial damping parameters and smoothing parameters. 

• If the geometry contains any complex features, describe in detail the geometry and 
explain how it was computed, e.g., any interpolation procedures used to construct the 
geometry.  

• Describe how the spatial mesh was generated, especially all the clustering features of 
the mesh, and provide the coordinates of all mesh elements.  

• Describe how all the sequences of meshes with different levels of mesh refinement are 
related to one another. For example, were the multiple meshes generated by starting 
with the finest mesh and then coarsening? or was the process done in the reverse order?  

• State the formal order of convergence of all the numerical methods used to solve the 
PDEs, including numerically computed Jacobians in mapping the physical space to the 
computational space, and any numerical processing procedures, such as interpolation, 
integration, or differencing, that were used to compute the SRQs of interest. 

• Describe the computer code, including its version number, and state whether the code 
is available for public dissemination. 
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3.2 Comparing Candidate Code Results with Verification Benchmarks 

As discussed in Section 1, we are only interested in comparisons of a candidate code with a 
benchmark for the purpose of assessing the accuracy of the results of the candidate code. Issues 
related to computing-speed performance or to robustness of the candidate code are not of 
particular interest here. Given this context, how one would want to report the results obtained from 
comparing a candidate solution to a benchmark solution depends on the purpose of making the 
comparison. Suppose the purpose of the comparison is similar to one of the following: (a) making 
a preliminary assessment of the accuracy of a code that is in development, (b) investigating the 
accuracy of a new numerical algorithm implemented in a code, or (c) conducting a proprietary 
investigation of the accuracy of a code that is in competition with your own commercial code. We 
would characterize all these types of comparison as “informal,” given that the results of the 
comparison are for restricted or preliminary use, and they may not be documented. 

 
In this paper, we are interested in “formal” comparisons of candidate results and benchmark 

results. Some examples of the use of formal comparisons are as follows: (a) a potential software 
customer wants to compare the accuracy obtained from competing commercial codes, (b) a large 
organization that develops its own codes for internal use for high-consequence systems wants to 
determine how its codes compare with industry-standard benchmarks, (c) a governmental 
regulatory organization wants to require that certain verification benchmarks be passed before a 
code could be used for performing analyses of high-consequence systems, (d) an accident 
investigation committee wants to determine whether there were any deficiencies in the software 
that was used to analyze the performance and safety of a system that failed, and (e) a commercial 
software company wants to use the results of formal comparisons of its code with benchmarks in 
its marketing program. 

 
Even though our interest is in rigorous comparisons, we believe that these comparisons 

should not be included in the benchmark database. Our viewpoint is contrary to the views 
expressed by Rizzi and Vos [15] and Vos et al. [16]. However, one must recognize that the 
database these researchers have envisioned and the databases that have been constructed in Europe 
are developed with a weaker form of benchmark than the benchmarks we are proposing in this 
paper. Rizzi and Vos and Vos et al. believe that comparison results that have been obtained should 
be included in the database if the individuals who computed the results choose to put them in the 
database. It is our view that if the benchmarks in the database are indeed SSBs, such executed 
comparisons add nothing to the database. If the candidate code results have met all the stringent 
requirements for inclusion in the database, the candidate results could be included as a new 
benchmark for the same problem. Alternatively, the new solution could possibly replace the 
existing benchmark if it has a stronger pedigree than the existing benchmark. As discussed in 
Section 5, there must be a well-defined and formal review process for deciding which solutions 
can be included in the SSB database. 

 
Thus, we advocate that separate documentation be prepared to describe the formal 

comparisons. The formats in which the documentation is prepared and presented (e.g., reports, 
graphs, etc.) should be determined by the developers of the documentation, based on the purpose 
for which the results of a code’s performance is being published. To achieve some of the goals 
suggested for formal comparisons, the documentation of the comparisons should contain much of 
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the same information described previously in Sections 3.1.1 through 3.1.4. The key piece of 
information that is of interest in the documentation is, Did the candidate code pass the benchmark? 
The most common method of answering this question is by comparing a computed result for an 
SRQ from a candidate code with the comparable result from an SSB. Although this comparison is 
useful, it has two significant disadvantages. First, the accuracy requirement for comparing the 
candidate and benchmark SRQs is quite arbitrary. For example, should one require an accuracy of 
1% or an accuracy of 0.1% or machine precision accuracy when comparing results? Saying that 
the accuracy required depends on the application of interest defeats the purpose of the benchmark. 
Second, the accuracy of the candidate result will depend directly on the mesh and the temporal 
resolution that are used in the computed result. That is, the candidate result will depend in a 
continuous manner on both the mesh and the temporal resolution. As discussed in Section 2.1.2, 
the most definitive test of the accuracy of a code is to determine the observed order of 
convergence. 

 
For type 1 and type 2 benchmarks, the accuracy of the benchmarks should be adequate to 

determine the observed order of convergence by using the benchmark and solutions from three 
different mesh resolutions of the candidate code. For a type 3 benchmark, this approach may not 
be possible because the accuracy of the benchmark may not be adequate. For a type 4 benchmark, 
it is likely that the accuracy of the benchmark will not be adequate to reliably determine the 
observed order of convergence of the candidate code. As a result, different measures of “pass” and 
“fail” must be assigned to each type of benchmark with which the candidate code is being 
compared. 

 
When presenting the observed order of convergence for the candidate code, there are two 

criteria one might use to determine the assessed order of convergence of the candidate code, i.e., 
the pass/fail status of the candidate code compared to the benchmark. First, one may choose to 
require that the observed order of convergence of the candidate match its stated formal order of 
convergence. Or second, one may choose the much weaker criterion that the observed order of 
convergence of the candidate code be positive, i.e., the minimum requirement that it converged to 
the correct answer. We believe, however, if the observed order of convergence is close to zero, 
then it is unlikely that the candidate code is correct. Regardless of which criterion is chosen, the 
observed order of convergence should be reported in the documentation as a plot of the observed 
order of convergence as a function of mesh and/or temporal resolution. In such a plot, one can 
discern the observed order of convergence in the asymptotic region for the particular SRQ. 

 
If the observed order of convergence cannot be computed for the candidate code, then one is 

left with simply comparing the candidate result for an SRQ with the corresponding benchmark 
result. If this comparison is used, it is recommended that the results be shown as a difference 
between the candidate code and the benchmark as a function of mesh and/or temporal resolution. 
If the candidate code is capable of computing the solution as accurately as the benchmark, then the 
difference plotted would start to show erratic results for fine-mesh resolutions. 
 

4  Recommendations for Validation Benchmarks 
 
In Section 2.2.2, we briefly discussed our views on the unique characteristics of validation 
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experiments. As pointed out, a validation experiment is more than a traditional, high-quality, 
experiment. It must provide information that is typically not available in traditional experiments, 
and it is optimized for nontraditional customers, such as mathematical model builders and 
simulation analysts. Since most traditional experiments available in the published literature have 
not been designed as validation experiments, some of the recommended characteristics to be 
discussed for strong-sense benchmarks (SSBs) will seem rather idealistic and impractical to 
obtain. However, as new experiments are conducted in the future, these recommendations could be 
used for the design and acquisition of new high-quality validation benchmarks. 

 
High-quality validation benchmarks will be much more feasible to obtain at the lower tiers 

of the validation hierarchy discussed earlier. As one proceeds to higher tiers, i.e., more complex 
physical systems, in the hierarchy, the number and importance of the unmeasured input quantities 
will decrease the ability to critically assess the computational model of interest. Stated differently, 
comparing experimental data obtained from complex systems with computational results 
inevitably becomes a process of calibrating the very large number of either unmeasured or poorly 
known parameters in the models. Thus, most of the recommendations for validation benchmarks 
in Section 4.1 deal with the common theme: measurement and documentation by the 
experimentalist of essentially all input quantities needed in the code to minimize the degree of 
calibration of the physics modeling parameters by the computational analyst. In Section 4.2, the 
same theme is addressed, but there it is oriented toward the computational analyst who is 
conducting the comparison of the candidate code with the validation benchmark. 
 

4.1 Constructing Validation Benchmarks 

The activity of constructing and documenting validation benchmarks is primarily the 
responsibility of the experimentalist. As discussed with respect to Fig. 4, validation benchmarks 
are intended to address the issue of model accuracy assessment. Issues related to the accuracy 
requirements for a particular application, or the accuracy of the model when it is extrapolated to 
other intended uses, are not addressed in this discussion on constructing validation benchmarks. 
Furthermore, issues pertaining to code verification, solution verification, and modeling 
assumptions are not dealt with in this section, as those issues are properly addressed in Section 
4.2. As we have emphasized, there is a logical dependence of the quality of validation upon code 
and solution verification. 

 
High-quality validation benchmarks require both detailed documentation and exceptional 

procedures to ensure high accuracy of the benchmarks. The recommended documentation of a 
validation benchmark contains four elements (or parts): (1) conceptual description, 
(2) experimental description, (3) uncertainty quantification (UQ) of benchmark measurements, and 
(4) additional user information. These parts are described in Sections 4.1.1 through 4.1.4, 
respectively. 

 
To clarify some of the recommendations, we give an example of a hypothetical benchmark 

experiment in fluid dynamics. This example is carried through the discussion of each of the 
following subsections. Not every detailed piece of experimental information needed for the 
benchmark is discussed in this example, but we highlight those elements of our experiment that 
are not commonly included in the execution and documentation of an experiment. 
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4.1.1 Conceptual Description 

The first part of the validation benchmark documentation is the conceptual description, i.e., 
information appropriate for the development of a conceptual model of the benchmark. The format 
of this description should be textual; no equations or symbols should be used. The reason for 
recommending that a textual description be given is that this format would be most usable in an 
electronic database of validation benchmarks that we believe should be constructed in the future. 
The conceptual description should include three elements, namely, the primary types of physics 
being tested, the SRQs measured in the experiment, and related engineering applications. Listed 
below are our recommendations for developing a conceptual description for these important 
elements.  

 
1. Describe the primary types of physics, or coupled physics, that the benchmark is intended 

to test in the computational modeling. If appropriate, a description should be given that is 
divided into two categories denoting the importance of the physics being tested: the 
primary physical processes occurring in the experiment, and the secondary physical 
processes occurring in the experiment. This categorization will assist both computational 
analysts and developers of physics models in searching the validation database for 
experiments that are aligned with their immediate interests. In designing validation 
experiments, one should maximize the effect of the physics of interest and minimize the 
effects of all other physical processes not of interest. Our example in fluid dynamics begins 
with the following: 

Primary physics occurring—incompressible, turbulent flow with large separated regions 
over a circular cylinder with heat transfer 
Secondary physics occurring—small effect of variable thermodynamic and transport 
properties near a heated surface and in a wake region 

2. List both the quantitative and qualitative SRQs measured in the experiment. The 
quantitative SRQs could be steady-state, time-averaged or frequency-averaged, time-
resolved or frequency-resolved measurements. We have found that qualitative 
measurements, such as video imaging of the physics phenomena during the experiment, 
can be very useful in guiding the computational analyst in the appropriate assumptions that 
should be made for modeling the experiment and also for aiding the experimentalist in 
diagnosing any unforeseen problems with the experiment. Continuing with our example in 
fluid dynamics, the SRQ listing is as follows: 

System responses quantitatively measured—three-dimensional, unsteady velocity 
measurements in streamwise planes normal to the cylinder, and high-frequency, surface 
pressure measurements in the wake of the cylinder 
System responses qualitatively measured—flow-field visualization provided by marker-
dye injection, high-speed-digital-video imaging of the flow field  

3. Describe some of the important engineering applications at higher levels in a validation 
hierarchy to which this benchmark could be related. Since complex engineering systems, 
or subsystems, of interest occur at higher tiers in the validation hierarchy, some examples 
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should be provided so that electronic searches of the validation database could find 
benchmarks that may be of interest to a wide range of applications. For our fluid dynamics 
example, the following engineering applications are provided: 

Related applications of interest—flow inside heat exchangers, flow across tube-bundles, 
natural convection inside cavities, liquid cooling of internal combustion engines, forced 
and natural convection over circuit boards 

 

4.1.2 Experimental Description  

The second part of the validation benchmark documentation is the experimental description. 
The description should provide a wide variety of necessary detailed information about the 
geometry of the experiment; the boundary conditions, initial conditions, and auxiliary data; and 
the SRQs measured. Specification of these elements should include, as applicable, input data 
needed for the computer code, measurement techniques used in the experiment, any data reduction 
and processing techniques required, and details about the experimental facility. A suggested 
approach to preparing the experimental description is presented below. 

 
1. Describe the geometry of the experiment conducted, along with any supplementary 

geometry experiments that were conducted in support of the benchmark experiment. A 
supplementary geometry experiment is one that could be simulated by the computational 
scientist with much higher accuracy and confidence than the primary geometry of interest. 
For our fluid dynamics example, we have the following geometry-related information: 

Geometry—flow over a circular cylinder near a flat, solid wall in a water tunnel. The 
cylinder was mounted at various distances from the wall: 0.0, 0.1, 0.2, and 0.5 diameters. 
Supplementary geometry—flow inside the water tunnel without the cylinder in the test 
section 

 
2. Specify all the measured boundary conditions, initial conditions, material properties, 

imperfections in the test geometry or experimental facility, forcing functions, surface 
properties, transport properties, thermodynamic properties, mass properties, etc. The 
specification of boundary conditions should include computer-aided-design (CAD) files of 
the exact geometry that was used in the experiment and should be presented in a 
commonly used format. If appropriate, two types of CAD files should be provided: a) a file 
of the geometry as it was manufactured and assembled, and b) a file of the geometry as it 
existed during the experiment, e.g., under thermal or mechanical loading. The CAD files 
can significantly diminish the possible misinterpretation or ambiguity present in traditional 
design drawings and greatly reduce the time required by computational scientists to 
construct a mesh of the geometry. Validation experiments should be designed to minimize 
the complexities and difficulties with which computational analysts must deal, if these 
problems are not important to assessment of the physics models of interest. For our fluid 
dynamics example, we have the following information about the boundary conditions:  

Boundary conditions—A solid circular cylinder was heated over its entire length using 
electrical-resistance heating. The cylinder was mounted near the bottom wall of a water 
tunnel, and it spanned the entire width of the test section. Over the length of the test 
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section, the tunnel had a square cross section 10 cm x 10 cm. The diameter of the cylinder 
was 1 cm, and it was placed 20 cm from the beginning of the test section. The test section 
was 100 cm long. All the tunnel walls had a turbulent boundary layer approaching the test 
section. The three-dimensional, unsteady velocity field was measured over the entire 
inflow plane at the beginning of the test section for each Reynolds number tested. 
Increased spatial resolution of the velocity field was attained near each of the tunnel walls. 
The water temperature was measured at the beginning of the test section and as a function 
of time during the experiment. The water was de-aerated to eliminate bubbles. 
Measurements were made for two Reynolds numbers: 10 x 103 and 100 x 103. These 
numbers were based on average inflow velocity, kinematic viscosity of the water, and 
diameter of the cylinder. Time-averaged static pressure measurements were made in the 
middle of each tunnel wall at three locations: at the beginning, middle, and end of the test 
section, The heat flux per unit length along the cylinder was measured. The heat flux 
leaking from the ends of the cylinder was measured. For 100 cm past the end of the test 
section, each wall of the water tunnel was set at the same diverging angle of 5 degrees, 
resulting in an increasing cross-sectional area.  

Note that accompanying the above textual description would be detailed drawings and a 
CAD file of the geometry of interest and the water tunnel, as well as measurement 
locations for the boundary conditions. 

 
3. Specify all the SRQs that were both quantitatively and qualitatively measured, along with a 

detailed description of the diagnostic techniques, analog-to-digital sampling, signal 
filtering, signal conditioning, and time- or frequency-averaging methods. For our fluid 
dynamics example, we have the following SRQ specifications: 

System responses quantitatively measured—three-dimensional, unsteady velocity 
measurements in three planes normal to the cylinder. One plane was in the middle of the 
cylinder. The other two planes were halfway between the middle of the cylinder and each 
side wall. The planes extended from 5 diameters upstream of the cylinder to 10 diameters 
downstream of the cylinder, and from the lower to the upper wall of the test section. 
Velocity measurements were made using particle imaging velocimetry in a rectangular grid 
pattern at 5,000 points in each plane. Velocity measurements were made at a frequency of 
1/s for a time period of 1000 s. Time-averaged velocity measurements are also available 
over the 1,000 s period. High-frequency surface pressure measurements were made on the 
wall of the tunnel at 0., 1, and 5 diameters downstream of the cylinder. 

 System responses qualitatively measured—Marker dye was injected along a narrow slit in 
the wall near the cylinder and parallel to the cylinder at a location of 5 diameters upstream 
of the cylinder. Digital video images were recorded of each experiment at a framing rate of 
100/s. The unsteady cellular structure in the wake of the cylinder can be seen at each 
Reynolds number tested, along with the change in wake structure near the sidewalls of the 
test section. 

 

4.1.3 Uncertainty Quantification of Benchmark Measurements 

The third part of the validation benchmark documentation should provide estimates of 
experimental uncertainty for all the SRQs measured, as well as uncertainty estimates of all the 
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quantities that could be used as possible inputs for the computational simulation, such as boundary 
conditions, initial conditions, material properties, geometrical features, etc. A suggested approach 
to estimating and documenting the UQ is presented below. 

 
1. Describe all the instrument, diagnostic, and facility calibration procedures. Particular 

emphasis in calibration procedures should be placed on identifying, and possibly 
estimating, subtle bias errors in calibrations, e.g., shifts in diagnostic measurements due to 
temperature, pressure, time, reference frequencies, and so forth. In designing validation 
experiments, one should attempt to use multiple diagnostic techniques to measure both 
SRQs and input quantities. By comparing results from multiple measurement techniques, 
one can better identify possible bias (systematic) errors in the measurements. For our fluid 
dynamics example, an experimentalist could use different diagnostic techniques to identify 
bias errors in the optical calibration of particle imaging velocimetry measurements. The 
experimentalist could also use different techniques to determine possible temperature bias 
effects on the high-frequency surface pressure measurements aft of the cylinder. 

 
2. Describe whether an input quantity needed for the computational simulation is a controlled 

quantity or an uncontrolled quantity in the experiment. A controlled quantity is one that 
can be adjusted, to a large degree, by the experimentalist or by procedures related to the 
operation of the experimental facility. An uncontrolled quantity is one over which the 
experimentalist has little or no control, such as atmospheric weather conditions, impact 
location of an object on an irregular surface, turbulence spectrum and spatial variability in 
a wind tunnel, and unit-to-unit variability of material samples. If a quantity is uncontrolled 
but can be measured, e.g., atmospheric weather conditions, then uncertainty in the 
measurement should be given. If the quantity is an uncontrolled quantity but was randomly 
drawn from a population, then the population should be well characterized before the 
experiment. For example, if material testing is being conducted on a number of small 
specimens (coupons), the needed input material properties should be characterized by a 
probability distribution that was constructed by a large number of random draws from the 
sample population. There are also situations where there are a very limited number of 
specimens and the specimens are destroyed in the characterization process. In such cases, 
large uncertainty exists in the characterization of the population, resulting in an ensemble 
of possible probability distributions. This large uncertainty damages the quality of the 
validation benchmark, but it is sometimes unavoidable because of cost considerations. 
Alternately, the characterization of the specimen population would occur during the 
validation process via a calibration activity. This latter approach, although less desirable 
because it combines validation and calibration, is sometimes unavoidable. 

 
3. Provide estimates of both the bias error and the random (precision) error of the quantities 

measured. The uncertainty in measured quantities could be characterized as one of the 
following: an interval (i.e., there is a single true value that is believed to lie in the stated 
interval, but no other information is available concerning the true value); an imprecise 
probability distribution (i.e., the true quantity is a random variable characterized by a 
known family of probability distributions, but the parameters of the probability distribution 
are only stated as intervals); and a precise probability distribution (i.e., the true quantity is 
a random variable characterized by a probability distribution with accurately known 
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parameters). It has been found that one of the most effective methods of quantifying 
experimental uncertainties, particularly bias errors, is to conduct the same experiment in 
multiple experimental facilities, preferably using different diagnostic techniques. The time 
and cost involved in conducting experiments at multiple facilities will commonly cause 
most project managers and funding sources to lose interest. 

 
4. Describe and justify the UQ procedures that were used for each measured quantity. Some 

examples of UQ procedures, from least desirable to most desirable, follow: experience of 
the experimentalist in previous experiments using similar techniques in the same facility; 
measurement of some of the components contributing to uncertainty, but no formal 
procedure for estimating uncertainty; propagation of contributing uncertainties to formally 
estimate uncertainty in an SRQ [84]; and statistical design-of-experiment procedures to 
directly estimate the uncertainty in SRQs using multiple realizations of the experimental 
measurements under varying conditions [2, 3, 63, 85, 86]. This last procedure, usually 
referred to as a statistical blocking procedure, can quantify certain types of correlated-bias 
errors, such as those due to nonuniformity in the flow field of a wind tunnel, imperfections 
in the model used in a wind tunnel experiment, certain types of misalignment in a load cell, 
and asymmetries in the thermal heating of components. 

 

4.1.4 Additional User Information 

The fourth part of the validation benchmark documentation should include all the traditional 
documentation associated with archiving high-quality experiments. In addition, the documentation 
should include details that could possibly assist users of the benchmark in several ways. First, 
information on the experimental technique, experimental procedures, experimental facility, 
boundary condition, initial conditions, etc., should be provided that could help the computational 
modeler choose different modeling assumptions than the experimentalist might have thought the 
modeler would have used. For example, the modeler may choose to use a three-dimensional 
Cartesian coordinate system instead of a two-dimensional axisymmetric coordinate system, or the 
modeler may want to include the actual nonuniformities in either the component tested or the 
facility being used in the experiment. Second, information should be provided on the experimental 
operating procedures. Based on this description, the modeler may choose to represent 
experimentally reported measurement uncertainties differently than what might be expected. 
Third, another experimentalist may choose to conduct the same experiment in their facility and 
submit the results either to supplement the existing benchmark or to possibly replace it. 

 

4.2 Comparing Candidate Code Results with Validation Benchmarks 

The activity of comparing candidate code results with validation benchmarks and preparing 
documentation for this activity is the responsibility of the computational analyst. As discussed in 
Section 3.2, we are only interested in formal comparisons of code results with validation 
benchmarks. Also, as explained previously, the code results and comparisons with the validation 
benchmarks should not be included in the database. As with the comparison of candidate code 
results with verification benchmarks, the formats in which the documentation is prepared and 
presented (e.g., reports, graphs, etc.) would be determined by the developers of the documentation, 
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based on the purpose for which the results of a code’s performance is being published. 
 
In the comparison of code results with validation data, we do not believe there is an 

acceptable way, in general, to answer the question, Did the code pass the validation benchmark? 
Our viewpoint can be explained from two perspectives. First, we view the assessment of model 
accuracy by comparison with experimental data as a “continuum” in the sense of the validation 
metrics discussed in Section 2.2.1. We believe that validation metrics are the fundamental 
operators in assessing model accuracy. A validation metric is a difference operator that can yield a 
deterministic result, a precise probability distribution, or an imprecise probability distribution, 
with each, preferably, having some type of associated confidence measure. Stated differently, 
validation metrics are simply measures of agreement between simulations and experiments that 
have no fundamental “good” or “bad” associated with them. Second, to state that a benchmark has 
passed, one would have to have some stated accuracy requirement for an application of interest, as 
addressed in the discussion of Fig. 4. The accuracy requirement should, we believe, be determined 
by the application of interest, not by some vague concept related to the philosophy of science or, 
for example, related to the amount of scatter that exists in the experimental data. In addition, 
validation metrics can be applied to several different SRQs from a validation benchmark. It is 
expected that the metric results for some of the SRQs will meet accuracy requirements, and some 
will not. Then, as we have observed in real engineering projects, additional discussions will ensue 
with regard to the appropriateness of the accuracy requirements, as well as the cost, schedule, and 
performance of the engineering system of interest. The consequence of our viewpoint is that the 
comparison of code results with validation benchmarks should be formally documented, but no 
pass or fail assignment should be given. 

 
The types of information that should be included in the documentation regarding the 

comparison of code results with validation benchmarks is a combination of (a) the recommended 
documentation described previously in Sections 3.1 and 3.2 for constructing and comparing with 
verification benchmarks, especially for a type 4 benchmark; and (b) the recommended 
documentation provided in Section 4.1.1 for constructing validation benchmarks. As discussed 
below, most of the recommendations for comparing candidate code results with validation 
benchmarks will stress the common theme: exposing and explaining in the documentation of the 
computational analysis any “tuning” of physics modeling choices or numerical parameters that has 
been done to improve comparisons with the experimental data. As is well known, there is a great 
deal of flexibility in computational simulations to tune methods and parameters to obtain good 
agreement with known experimental measurements. Left unfettered or hidden, this flexibility 
greatly diminishes the value of documenting comparisons of computational simulations with 
already known measurements. And, as is widely recognized, the most valuable validation 
benchmarks are those for blind comparisons, i.e., comparisons with experimental measurements 
that are not known beforehand. 

 
The following list contains some examples, organized by topical areas, of what 

computational analysts need to do when comparing the code results with formal validation 
benchmarks and documenting the process for their own uses. Our intent in this list is to stress 
certain elements and to add new elements that may not have been called out previously in this 
paper. 
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• Code verification. References should be provided to document the code verification 
activities that have been completed and the version of the code that was used for these 
activities. 

 
• Solution verification. Detailed information should be provided about iterative error 

convergence. At least three mesh resolutions and three temporal discretizations should be 
computed so that Richardson’s method can be used to estimate the spatial and temporal 
discretization error on each of the SRQs that are compared with the experimental data. In 
addition, the observed order of convergence should be documented, along with the 
theoretical order of convergence. 

 
• Computation of SRQs. In almost all fields of engineering, it is traditional to compute 

deterministic values for SRQs. That is, it is assumed that no uncertainty exists in any of the 
input quantities, e.g., boundary conditions, initial conditions, material properties, etc., so 
that a single value is computed for each of the SRQs. These deterministic values are then 
compared with the experimentally measured SRQs. This is, of course, the minimum level 
of comparison that should be made between code results and experimental benchmark 
results. It is recommended, however, that nondeterministic results be computed for each 
SRQ based on the uncertainty quoted for each input quantity, as stated in the validation 
benchmark. This is usually referred to as UQ of SRQs as a function of uncertain input 
quantities. As discussed in Section 4.1.3, the uncertain input quantity could be 
characterized as an interval, an imprecise probability distribution, or a precise probability 
distribution. Propagation of these uncertain quantities through the computational 
simulation model will likely rely on methods like Monte Carlo sampling or Latin 
hypercube sampling [87-90]. Importantly, major increases in computational resources will 
be required to compute tens or hundreds of solutions needed for the sampling techniques. 
In our experience, there will be much resistance to expending this level of computational 
resources for this purpose. Nonetheless, the probabilistic risk assessment communities, 
especially those concerned with nuclear reactor safety and the underground storage of 
nuclear waste, have accepted this philosophy of simulation for over two decades. 

 
• Validation metrics. Traditional graphical comparisons should be included; however, 

validation metrics should also be used. Because validation metrics are in an early stage of 
development, only a limited range of examples are available [4, 19, 66-78]. Validation 
metric results should be computed for all the SRQs measured in the experiment so that 
objective information is complete rather than partial or biased toward those that “look 
good.” 

 
• Calibration. Throughout this paper, we have carefully distinguished between validation, 

i.e., assessment of model accuracy, and calibration, i.e., activities to optimize model 
parameters when code results are compared with experimental measurements. Without a 
doubt, the most common parameters that are optimized are those that were not provided by 
the experimentalist in the documentation of the experiment. That is why we have stressed 
the importance of the experimentalist providing uncertainty estimates of all input 
quantities that might be needed for simulations. However, we recognize that there will 
probably be some “wiggle room” for computational analysts to optimize unmeasured, and 
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undocumented, input quantities needed for the code that are related to physical 
characteristics of the experiment. If this is done in obtaining the code results, we believe it 
is necessary for the computational analyst to document any procedures that are used to 
optimize the input quantities. Our recommendation also applies to any numerical 
parameters (e.g., numerical damping, numerical smoothing, and hour-glass control of the 
vibrational modes of individual elements in solid dynamics meshes). 

 
• Global sensitivity analysis. Here we mean an analysis that rank-orders the importance of 

each uncertain input for each SRQ according to the magnitude of change of the SRQ for a 
unit change in each uncertain input. This analysis is typically conducted by using the 
sampling results from the UQ analysis discussed above and reprocessing these results (see, 
for example, Refs. [91-94]. Conducting a sensitivity analysis as part of a comparison of 
code results with a validation benchmark is important from two perspectives. First, the 
analyst computing the results, or another analyst reading the documentation, will obtain a 
deeper understanding of the importance of different input quantities in relationship to the 
SRQs. Often, the ranking of sensitivities can be quite surprising. Second, the 
experimentalist who conducted the experiment can use the sensitivity analysis to possibly 
update the uncertainty estimation on some measured quantities. Also, the experimentalist, 
or possibly a different experimental group, may choose to conduct a new experiment and 
judiciously reduce the experimental uncertainty on the largest contributors to uncertainty in 
the SRQs. 

 

5  Implementation Issues of a Verification and Validation 
Database 

 
If V&V strong-sense benchmarks (SSBs) and a database to house them were to become a 

reality, a number of complex and difficult implementation and organizational issues would need to 
be addressed. Some of these issues would be, for example, primary and secondary goals of the 
database, initial construction of the database, review and approval procedures for entries into the 
database, open versus restricted use of the database, the structure of the software framework for 
searching and retrieving information on SSBs in the database, organizational control of the 
database, relationship of the controlling organization to existing private and governmental 
organizations and engineering societies, and initial and long-term funding of the database. These 
issues are of major importance to the joint community of individuals, corporations, commercial 
software companies, nonprofit organizations, engineering societies, universities, and governmental 
organizations with serious interest in improving CS&E. 

 
Initial construction of the database would be technically and organizationally complex, as 

well as costly. Populating the database with relevant, high-quality benchmarks would require a 
wide-ranging effort that cuts across major communities of applied mathematics, model building, 
experiment, computation, engineering applications, and business decision making. Putting this 
kind of collaborative effort together hinges on a careful plan that takes the long-term view for the 
database. The benchmark effort we describe in this paper is not feasible as a short-term task. Much 
of what we recommend clearly aims at a sustainable and long-term use of the database, with an 
implication that the quality and breadth of the database improves over a long period of time. The 
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long-term success of the database requires a sound starting point, with broad consensus from all 
interested parties about goals, use, access, and funding over the long term. 

 
Broad organizational issues must be addressed very early in the planning stage. For example, 

Will a single organization (nonprofit, academic, or governmental) have responsibility for database 
maintenance, configuration management, and day-to-day operation? Will the database have a role 
beyond its immediate community, as we have essentially argued in this paper? Broad impact then 
implies that there is the goal of open access to the database for the good of the CS&E community, 
specifically the world community in each of the traditional scientific and engineering disciplines. 
But how is this goal compatible with the significant expense needed to create, maintain, and 
improve the database? Financial supporters and users of the database would need to be convinced 
of the value returned to them for their investment. The returned value could be in many forms, 
such as improvements in their software products, the ability to attract new customers to their 
software products, and use of the database as a quality assessment tool for organizations or 
government agencies to allow contractors to bid on new projects. If proprietary information is 
used in the database, we believe it would greatly diminish, possibly eliminate, the ability to create 
and sustain the database. Some have argued that the database could be constructed so that 
proprietary information could be segregated from generally available information. We believe that 
private corporations would not be convinced such segregation could be accomplished with high 
confidence. 

 
It seems that V&V databases of the type we have discussed should be constructed along the 

lines of traditional engineering and science disciplines, e.g., fluid dynamics, solid dynamics, 
electrodynamics, neutron transport, plasma dynamics, and molecular dynamics. How each of these 
disciplines might begin to construct databases certainly depends on the traditions, applications, 
and funding sources in each of these fields. The nuclear power industry, for example, has a deeply 
embedded, long-term tradition of international cooperation. On the other hand, the aerospace 
industry, both aircraft and spacecraft builders, has a fierce competitive nature. We envision that a 
different implementation and database structure would be chosen in these two communities. 

 
This paper focused on the construction of SSBs primarily for the purpose of assessing 

numerical accuracy in codes (verification) and of assessing physics modeling accuracy in codes 
(validation). We recognize this is a narrow view of the possible uses of benchmarks, but we 
believe that SSBs are critically needed at this early stage of maturity of computational simulation. 
We suggest that a secondary purpose for the establishment and use of SSBs is for the development 
of best practices in computational simulation. As recognized by NAFEMS [6] and ERCOFTAC 
[95], there is a compelling need for improvements in professional practice in computational 
simulation. In our opinion, a convincing argument could be made that the most common failures 
in industrial applications of computational simulation result from mistakes made by practitioners 
using the code. Corporate and governmental management, of course, shoulders the ultimate 
responsibility for mentoring and training these practitioners, as well as for monitoring their 
computational simulation work-products. Given the qualities of SSBs discussed previously, these 
benchmarks could be viewed as very carefully documented step-by-step sample problems from 
which practitioners, new and experienced, could learn a great deal. 

 
Rizzi and Vos [15] and Vos et al. [16] discuss how validation databases could be built and 
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used by a wide range of individuals and organizations. They stress the importance of close 
collaboration between corporations and universities in the construction and refinement of a 
validation database. In this regard, they also stress the value of workshops that are focused on 
specialty topics to improve the modeling efforts and simulations that are compared to 
experimental data. They discuss a number of workshops and initiatives in Europe, primarily 
funded by the European Union. Often, these workshops provide dramatic evidence of the power of 
carefully defined and applied V&V benchmarks. One such effort organized in the United States, 
but with participants from around the world, is the series of Drag Prediction Workshops [96-100]. 
These workshops have been extraordinarily enlightening from two perspectives: (a) there was 
great variability in the drag predictions from computational analysts for a relatively simple aircraft 
geometry, and (b) there were surprisingly large differences between the computational results and 
the experimental measurements. The key factor in this exercise that resulted in a “surprising large 
range of results” is that this was a blind comparison. It was no surprise to us. Results from these 
types of workshops could form the basis for initial submittals of new V&V benchmarks into the 
database. 

 
We believe an Internet-based system would provide the best vehicle for the deployment of 

V&V databases for three reasons. First, the ability to build, quickly share, and collaborate with an 
Internet-based system is now blatantly obvious. A paper-based system would be completely 
unworkable, as well as decades behind the current state of information technology. We speculate 
on one aspect of deployment, although this issue is beyond the purposes of this paper. Many 
businesses around the world are gaining a better understanding of the competitive advantage 
provided by the speed of information transfer within their organizations, even if their 
organizations are spread around the world. Thus, we expect that corporate acceptance of a 
benchmark effort would hinge on Internet deployment. 

 
Second, descriptive terms that are of interest in a particular application of interest could be 

input to a search engine that could find all of the benchmarks that would contain those terms. The 
search engine could operate much like that found in Google or Wikipedia. Functionality could be 
expanded to include a relevancy-ranking feature that would further improve the search-and-
retrieval capability. The overall system design would include configuration-, document-, and 
content-management elements. Then the benchmarks that were retrieved could be sorted according 
to their relevance to the words input to the search. One could then select the hyperlinks embedded 
within any of the benchmarks found. When a particular benchmark is displayed, it could have 
links from important words in the benchmark description to more detailed information in the 
benchmark. 

 
And third, the computer-based system could instantly provide much more detail about each 

benchmark. We recommend that the documentation of V&V benchmarks be produced in an 
electronic format that is widely usable and robust across many computer operating systems. Of the 
electronic formats available, Adobe Portable Document Format (PDF) is the most commonly used 
and has many desirable characteristics; however, we also recommend that this format be 
supplemented with additional file formats for specialized information. For example, tabular data 
could be stored in ASCI text files or in Microsoft Excel files; high-resolution digital photographs 
should be stored in easily usable formats such as, tiff, PDF, and JPEG; digital video files should 
be stored in formats such as QuickTime, MPEG, or AVI; and computer software should be written 
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in common languages such as C++, FORTRAN, or Java. The computer software would be 
necessary for documenting the source terms in the MMS. 

 
In the long term, new validation experiments should be funded either by the organization 

controlling the database or by for-profit private, nonprofit, university, or governmental 
organizations. The organization controlling the database could receive its funding from 
subscribing members to the organization, and possibly from governmental funding. The funding 
could be directed to both operation and maintenance of the database and to constructing new V&V 
benchmarks. When new validation results are entered into the database, there would be a unique 
opportunity for blind comparisons. As we have stressed several times, blind comparisons are the 
real test of predictive-capability prowess. We believe that identification of new validation 
experiments should be the responsibility of both the application community and the database 
organization. The organizational role and facilitation of discussions regarding which experiments 
should be conducted is best served by the database organization. For example, the database 
organization could serve as an unbiased referee between for-profit corporations desiring more 
application-relevant experiments and model builders who are more knowledgeable of the 
weaknesses of modeling for complex systems. 

 

6  Concluding Remarks 
 
In this paper, we have made the argument that significant improvements in the methodology 

and practice of V&V are necessary to achieve improved credibility in CS&E. We have discussed 
in detail one element of needed improvements: the design, construction, and use of strong-sense 
benchmarks (SSBs) in V&V. If the reader is of the opinion that CS&E is mature, fully capable, 
and reliable to shoulder the new responsibilities demanded of it, then you will have little interest in 
the ideas proposed here. Or, if you are of the opinion that V&V is “Too hard. Too slow. Too 
expensive,” then you also will have little interest in our recommendations. If the reader is of the 
opinion, as are we, that CS&E is in its early stages of development and that its contributions to 
business, society, and governmental policies must be critically assessed and broadly available, 
then you will be more interested in our ideas. Even though the development of SSBs will be 
difficult, slow, and costly, they are necessary for the maturation of CS&E. This maturation is 
particularly important for the certification and regulatory oversight of the performance, safety, and 
reliability of high-consequence systems. In the past, the emphasis in certification and regulatory 
oversight, for example, in nuclear power reactors and large civil engineering projects, has been 
directed toward the physics modeling aspects of an analysis. We contend that the tools of CS&E, 
i.e., the computer codes, are becoming so complex that they too must be critically assessed. If 
SSBs can be developed and their pedigree documented to the level of being considered 
internationally as a “Standard,” then they can be used to make significant contributions to code 
assessment. 

 
While we only touched on organizational issues surrounding the construction and use of 

V&V databases, these are, in fact, highly sensitive challenges and are rooted in different aspects of 
worldwide economic competition, organizational and national prestige, and national security. 
Increasing the level of formality of V&V by constructing databases is going to inevitably lead to 
active discussions about further improvements in university education and professional-level 
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training in the field of computational science. This is the inevitable consequence of devoting large 
amounts of expert thought, money, and labor to the deployment and utilization of such databases. 
If these databases are developed and widely used around the world, then they are going to evolve 
into de facto, if not intentionally accepted, standards. There would be similarities of V&V 
benchmark standards to those international procedures that have developed over the last century 
for physical measurement standards. However, the range of expert knowledge required for V&V 
benchmark standards would be much broader than the knowledge requirements for physical 
measurement standards. 
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